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The numerical modeling of joints with a certain amount of clearance

and a subsequent validation of the model are important for accurate multi-

body simulations. For such validated modeling, not only the kinematic

constraints, but also the contact models, are important.

If a joint has no clearance, it is assumed to be ideal. However, in real

applications there is frequently some clearance in the joints. Adding clear-

ance and kinematic conditions to a pin-slot joint significantly increases the

number of kinematic and contact parameters. Consequently, the resulting

kinematics and the contact forces can vary significantly with regards to

the selection of those parameters.

This research covers the development of a validated model for a pin-

slot clearance joint. Different kinematic constraints and contact models

are discussed. The presented model is an experimentally validated one

for a pin-slot clearance joint that is commonly used in safety-critical ap-

plications like electrical circuit breakers. Special attention is given to the

Hertz, Kelvin-Voigt, Johnson and Lankarani-Nikravesh contact models.
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When comparing different contact models within numerical approaches

and comparing the results with experimental data, significant differences

in the results were observed. With a validated model of a pin-slot clear-

ance joint a physically consistent numerical simulation was obtained.

Keywords clearance joints, multibody dynamics, contact models, mea-

sured impact forces

1 Introduction

In the design process for mechanical assemblies, corresponding mechanical joints

have to be used to achieve the full functionality of the product. In the theory of

multibody dynamics [1, 2] these mechanical joints are modeled as kinematic con-

straints. A frequently used, planar mechanical joint in engineering applications

is the slide contact with clearance, also known as the pin-slot clearance joint.

For a validated dynamic response, the dynamic models must include physically

consistent kinematic constraints [1, 3]. Typically, these kinematic constraints

are modeled without including imperfections [4, 5] (e.g., friction, clearance, wear

or lubricant). For the sake of completeness, the following paragraphs discuss

current approaches to the clearance in the kinematic constraints, the types of

kinematic constraints, the contact models and the friction models.

Clearance in kinematic constraints is typically approached using the contin-

uous approach [6] or the non-smooth dynamics formulation [7]. The penalty

method is the most frequently used continuous approach, where contact forces

and deformations are modeled with a set of spring-damper elements that rep-

resent the surface compliance of the contact bodies [8]. In the non-smooth

approach, the unilateral constraints are solved as a linear complementary prob-

lem (LCP) [9, 10]. Which approach is more appropriate, depends on the type

of problem to be solved [11].

The joint constraints are introduced to the system of differential equations

as as a set of algebraic equations. The most commonly used and researched

constraint with clearance is the revolute joint [12], while the clearance in a pris-

matic joint is less researched [5]. In revolute joints, several studies focus on the

clearance. Pereira et al. modeled the dynamics of chain drives with an included

roller-sprocket and bushing-sprocket contact [13], and they used an enhanced
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cylindrical contact model [14]. In the research of Gummer and Sauer [15] an

overview of a variety of investigated slider-crank mechanisms is presented; the

clearance in the revolute joint was simulated with the commercial software Re-

curDyn. The influence of clearance in the pin-bushing type of revolute joint

on the dynamics of a partly compliant mechanism was studied numerically and

experimentally by Erkaya et al. [16]. The researchers Xu and Qi et al. used the

idea to model a revolute clearance joint as two colliding bodies in an analysis of

a multibody system with rolling ball bearings [17] and [18]. In the research [19]

of Xu and Yang localized defects were included in the model of a rolling ball

bearing. The clearance effect in prismatic joints was investigated by Zhuang

and Wang in [20] where the components were assumed to be rigid, while in [21]

the slider was considered to be deformable and modeled using the finite-element

method (FEM). Kinematic constraints like a cam with a follower were also a

research topic [22] using the non-smooth approach. A basic prismatic joint with

clearance has infinite length, otherwise it could result in a locked position at

some point, if a mechanism has only 1 DOF (like a slider-crank mechanism).

To date, much work has been done on clearance in revolute and prismatic con-

straints, while the pin-slot clearance constraint has not been studied extensively,

although it can also be found in engineering applications.

With the continuous approach to modeling the clearance in kinematic con-

straints, a contact model that best describes the evolution of the contact force

during impact has to be selected. The basic contact model was proposed by

Hertz [23] and was later further developed by several researchers to include en-

ergy dissipation by using a damping coefficient [24]. Contact parameters such

as the contact stiffness, which depends on the geometry and the material of

the bodies in contact, and the damping coefficient can be evaluated analytically

[25, 26] or experimentally [27, 28]. In the revolute clearance joint’s contact ge-

ometry the contact parameters are constant, while in a pin-slot clearance joint

the contact geometry and the parameters depend on the position of a contact

point on the slot.

When building kinematic constraints with clearance, besides the contact

forces, the friction forces are also important, and they are evaluated with a

selected friction model. These models can be classified as static or dynamic
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[29]. In static models [30] the friction is modeled as an explicit function of

velocity, while in dynamic models the friction depends explicitly on the time,

position and velocity [31]. In the research of Askari et al. [32] the friction force,

evaluated with a modified version of Coulomb’s friction model, is used to predict

the wear in a spatial ball joint with clearance.

A nonlinear contact stiffness parameter is used to evaluate the normal con-

tact force; and on the basis of the friction model the wear in the revolute joint

with clearance is evaluated [33]. In the majority of problems a dry friction is

assumed [21], although in some problems a lubricant effect is modeled in the

revolute clearance joint [34]. A Coulomb friction model was used to evaluate

the magnitude of the friction force, as this model is frequently used in con-

tact/impact situations due to its simple implementation. Advanced friction

models were found not to be significant in this research. While a friction model

is used to evaluate the magnitude of the friction force, its direction depends on

the tangent at a contact point between the pin and the slot.

This study introduces a validated model of a pin-slot clearance joint based

on a combination of the revolute joint with clearance and the prismatic joint

with clearance. The geometry of the pin-slot clearance joint allows two possible

positions for the contact point. Then, based on its position a contact force in the

normal direction is evaluated with a continuous force contact model according

to the contact geometry. A comparison of the contact force vector between the

numerical and experimental results is shown. The numerical results of the con-

tact force vector for different kinematic constraints and for the pin-slot clearance

joint with different types of contact models are presented.

This research is organized as follows: In Section 2, the formulation and the

dynamic equations of motion are presented. The equations of the planar pin-

slot clearance joint are derived in Section 3, while the contact and friction forces

are introduced in Section 4. The validation of the numerical simulations based

on the experiment is presented in Section 5 and discussions are presented in

Section 6. The conclusions are summarized in Section 7.
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2 Equations of motion for multibody systems

A mechanical system is an assembly of rigid and deformable bodies that are con-

nected with imperfect kinematic constraints to achieve the design requirements

[35].

For a planar mechanical system with nb bodies the equations of motion are

represented by a set of 3× nb differential equations augmented with a set of nc

algebraic equations that represent the constraints [2]: M CT
q

Cq 0

 q̈

λ

 =

 Qe

Qd

 (1)

where M is the mass matrix of the system. Kinematic constraints are repre-

sented as a set of holonomic algebraic constraints [5]; a set of nc independent

algebraic kinematic constraints C can be written as [1]:

C (q, t) = 0. (2)

In Equation (1) Cq is a constraint Jacobian matrix. Further, q̈ is the vector

of accelerations, Qe is the vector of generalized forces that contains all the

externally applied forces (including the contact forces developed at the clearance

joints), λ is the vector of Lagrange multipliers and Qd is the vector that absorbs

all the terms of the acceleration constraint equations that depend only on the

velocities.

The positional constraints (2) are included in Equation (1) at the accel-

erations level and therefore numerical integration violations of the constraint

equations can arise [34].

As these constraint violations have a greater impact on stiff systems [5], a

stabilization method has to be used. The Baumgarte stabilization method [36]

or similar methods [37] are usually applied to keep constraint violations under

control. The Baumgarte stabilization method modifies Eq. (1) and proposes the

next equation: M CT
q

Cq 0

 q̈

λ

 =

 Qe

Qd − 2α (Cqq̇ + Ct)− β2C

 , (3)

where the constants α and β have to be positive to guarantee the stability of

the general solution of Eq. (3) [38].
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After solving Eq. (1) or (3) for the vectors of the accelerations q̈ and the

Lagrange multipliers λ the system of n second-order differential equations is

written as a set of 2n first-order differential equations [39]. This is done by

defining the new vectors y and ẏ, which contain a vector of positions and ve-

locities and a vector of velocities and accelerations of the system, respectively:

y = [q q̇] and ẏ = [q̇ q̈] (4)

A numerical integration at time t that evaluates the state variable at the next

time t+ ∆t is carried out as [12]:

ẏ (t)

∫
dt−−→ y (t+ ∆t) (5)

This procedure is repeated until the end time of the dynamic analysis is reached.

3 Kinematics of the pin-slot clearance joint

The mathematical model for the pin-slot clearance joint is based on the rev-

olute clearance joint [34] and translational clearance joint [5]. The geometric

properties of the pin-slot clearance joint are as shown in Fig 1; length of the

slot (guide) L, width of the slot W and radius of the pin R.

In an ideal translational joint, only relative translational motion is allowed.

Similarly, in an ideal revolute joint, only the relative rotational motion between

two connected bodies is allowed. In the pin-slot clearance joint, the relative

rotation between the pin and the slot is not constrained, while the relative

translational motion is limited with regards to the slot length/width, see Fig. 1.

As discussed in the introduction, one of the most popular and physically

consistent approaches is based on the momentum exchange where the contact

force of the colliding bodies is evaluated with an appropriate continuous contact

force model [24].

The geometry and the contact situations of the pin-slot clearance joint are

significantly more demanding when compared to the revolute joint. Figure 2

shows three possible contact situations. Figure 2 a) no contact between the

pin and the slot where the pin is in free-flight motion inside the guide. For no

contact, no reaction forces are present. In Figure 2 b) the pin is in contact with
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Figure 1: Geometry of the pin-slot clearance joint.

the guide at the straight edge. In Figure 2 c) the pin is in contact with the

guide at the cylindrical edge.

Using continuous contact force models the different contact situations are

discussed next. Figure 1 shows the pin-slot joint with clearance. The slot is

marked as the body i, while the pin is the body j. The center of mass of

the bodies i and j coincides with their local coordinate system, while the xy

coordinate frame represents the inertial coordinate system. The pin body and

the slot body are in free flight and are not inertially fixed. Each body can be

additionally constrained using kinematic constraint equations, Eq. (2).

The position of a point P at an arbitrary body k = i, j in the global co-

ordinate system can be expressed in terms of the absolute coordinates of the

body [1]:

rkP = Rk + AkukP , k = i, j (6)
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a)

b)

c)

Figure 2: Different contact points between the pin and the slot. a) no contact,

b) contact point at the straight edge, c) contact point at the cylindrical edge

where R is the absolute position of the center of mass (local coordinate system)

in the global coordinate system, u is the relative position in the local coordinate

system, and A is a planar transformation matrix.

The velocity of the contact point P k can be evaluated by differentiating Eq.

(6):

ṙkP = Ṙ
k

+ Ȧ
k
ukP , k = i, j (7)

The relative normal contact velocity determines whether the bodies are mov-

ing towards each other, or away from each other (positive values indicate that

the bodies are in the compression phase). The normal and tangential compo-

nents of the relative contact velocity are determined as [24, 34]:

vn = nT
(
ṙPj − ṙPi

)
(8)

vt = tT
(
ṙPj − ṙPi

)
(9)

where n and t are the normal and tangent vectors of the contact geometry,

respectively, and where subscript P denotes an actual point of contact that also
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defines the normal n and tangent t vectors.

Contact point at the straight edge. In the local coordinate system of body

i the tangent vector t
i

is defined from the point P i to the point Ri:

t
i

= uiR − uiP (10)

and a tangent in the global coordinate system t is defined as:

t = Ai t
i

(11)

The contact point can be located on the edge AiBi or DiCi; in first case the

tangent vector is t
i

and in the second, it is −ti. The normal vector n is obtained

by a counter-clockwise rotation (π/2) of the tangent vector:

n = [ty,−tx]
T

(12)

The distance vector d of the pin center to the edge of the slot is:

d =
(
rjP − ril

)
−
((

rjP − ril

)
t
)
t, l = P,R (13)

and the length:

d =
√

dTd. (14)

Finally, the penetration depth is defined as:

δ = d−Rj0 (15)

where Rj0 is the radius of the pin.

Contact point at the cylindrical surface. For a contact point located at

the pin and at the cylindrical surface (with center P i or Ri) the eccentricity

vector e is defined as [40]:

e = rjP − ril, l = P,R (16)

The length of the eccentricity vector is evaluated as:

e =
√
eTe (17)
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The normal vector n is defined as:

n =
e

e
(18)

The penetration depth between the pin and the slot is evaluated as:

δ = c− e, (19)

where c = Rj0 − Ri0 is the radial clearance. Similar to the above, the tangent

vector obtained with a counter-clockwise rotation (π/2) of the normal vector:

t = [−ny, nx]
T

(20)

Potential contact points on the bodies i and j are Qi and Qj , as shown in

Fig. 1. A simple logic test needs to be implemented to determine the exact posi-

tion of the pin in the slot and the coordinates of the contact point. Furthermore,

the penetration depth is defined with Eq. (15) or (19).

The geometry of the nonparallel edges of a flat section of the slot can also be

considered with an additional evaluation of the tangent ti for each flat section of

the slot, and the penetration depth at the flat section Eq. (15) can be evaluated

per tangent ti. Then, the penetration depth at the cylindrical section Eq. (19)

can be evaluated once for every value of radial clearance c due to the different

values of Ri0 at point P i and Ri.

4 Contact forces of the pin-slot with clearance

joint

At the contacts between bodies, a contact force model is used to obtain the

integrable forces that are included in the equations of motion. These forces are

typically in the normal and tangential directions.

In the normal direction the Hertz contact model evaluates the contact force

as a nonlinear function of the indentation/penetration δ [23]:

Fn = Kδn, (21)

where K is the contact stiffness and n is the nonlinear power exponent defined

by the material and the local geometrical properties of the contacting bodies.
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For the contact between two spheres i and j with radii Ri and Rj the contact

stiffness K is defined as [41]:

K =
4

3 (hi + hj)

√
RiRj
Ri +Rj

(22)

where h for the body k is defined as:

hk =
1− ν2k
Ek

k = i, j. (23)

Ek and νk represent the Young’s modulus and the Poisson’s ratio, respectively.

Further details about the contact stiffness K between a plane and a sphere

can be found in [24], and between flat surfaces in [3].

The Hertz contact model (21) does not take into account the dissipation

of energy during the contact-impact process and therefore Kelvin and Voigt

developed one of the first contact force models that combines a linear spring-

damper element in parallel.

When the bodies in contact are moving away from each other, the energy

loss is evaluated using the coefficient of restitution [41]:

Fn =

Kδ, if vn ≥ 0,

Kδcr, if vn < 0,

(24)

where cr is the coefficient of restitution and vn is the relative normal contact

velocity, see Equation (8). The Kelvin-Voigt model may not be accurate, as it

does not represent the overall nonlinear properties of an impact [24]. A better

contact force model is [24]:

Fn = K δn + χ δn δ̇, (25)

where χ the hysteresis damping factor. One of the most popular and widely used

contact models was introduced by Lankarani and Nikravesh [8]; they defined the

hysteresis damping factor as:

χ =
3

4

K

δ̇0

(
1− c2r

)
. (26)

Using Eq. (25), the contact force is:

Fn = Kδn

(
1 +

3

4

δ̇

δ̇0

(
1− c2r

))
(27)
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For the internal contact between the pin and the half-circular end, the John-

son cylindrical contact model [42] can be used. The penetration δ is defined

as:

δ =
fn
πE∗

(
ln

(
4πE∗∆R

fn

)
− 1

)
, (28)

where fn is the contact force per unit axial length and E∗ is the contact’s module

of elasticity [42]:

1

E∗ =
1− ν2i
Ei

+
1− ν2j
Ej

. (29)

Ei and Ej are the moduli of elasticity for the bodies i and j, respectively.

Similarly, νi and νj are the Poisson’s ratios. In Eq. (28), ∆R is defined as:

∆R = Ri ±Rj (30)

where the ± sign depends on the contact geometry, being (−) for the internal

and (+) for the external contact between two cylinders.

Typically, the cylindrical contact models, like (28), represent the indentation

δ as a nonlinear function of the contact force fn [43].

To evaluate the contact force fn at each integration time step, an itera-

tive technique is required (e.g., the Newton-Raphson method). Consequently,

several researchers tried to avoid the root finding, e.g., based on the Lankarani-

Nikravesh and the Johnson models, while Pereira et al. [14] introduced an en-

hanced cylindrical contact model.

In the tangential direction the relative tangential velocity results in tan-

gential friction forces at the contact between two bodies. Several researchers

have used a Coulomb friction model to model friction in revolute clearance

joints [44, 45, 46]. The most widely employed friction model is the Coulomb

friction law [47]:

Ft = −µFnsign (vt) (31)

where µ is the coefficient of friction and Fn is the force in the normal direction.

The contact forces that arise in the frictional contact and act on the body i are:

Fi = Fnn
i + Ftt

i (32)
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and for the body j: Fj = −Fi. These contact forces are introduced to the

system Equations (1) or (3) via the vector of generalized external forces Qe. For

an arbitrary planar body k with the known contact force Fk and the position

vector ukP (6) the generalized external force is defined as [1]:

Qk
e =

 Fk
T

Fk
T

Ak
θu

k
P

 . (33)

The contact deformation is evaluated with Eq. (19) for each cylindrical sec-

tion and with Eq. (15) for each flat section of the slot. If one of the values of

the deformation meets the criteria for a contact, i.e., the deformation δ is below

the user-defined tolerance δTOL, the deformation is used with a contact model

to evaluate the magnitude of the normal contact force. The direction of the

normal contact force is defined with Eq. (18) or Eq. (12), based on the position

of the contact point (cylindrical or flat section). The magnitude of the tangen-

tial friction force is evaluated with a selected Coulomb friction model based on

the magnitude of the normal contact force. The direction of the friction force

is defined with Eq. (11) for every flat section or Eq.. (20) for every cylindrical

section. The total contact force on the body i is evaluated with Eq. (32) and

for body j this vector has the opposite direction. The vector of the generalized

contact force for each body Qk
e is then evaluated with Eq. (33) and used to

construct the external force vector of the system Qe, Eq. (3). This procedure

is implemented inside the contact-analysis procedure within the computational

procedure for multibody system dynamics, Fig 3, and it runs each integration

time step.

5 Model validation

A planar mechanical system, specifically designed for this purpose, is researched

to validate the pin-slot clearance joint model. The multibody system is assem-

bled from two bodies: a T-shaped aluminum body 0 with a slot and an aluminum

pin, body 1, fixed to the ground and connected to the body 0 via a pin-slot clear-

ance joint. The aluminum body 0 is also attached to a pre-stressed helical steel

spring, see Fig. 4.
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Figure 3: Representation of the computational procedure.

a) b)

Figure 4: Multibody system with a pin-slot clearance joint

5.1 Experimental setup

The experimental setup is shown in Fig. 5 and the sketch of the experimental

setup in shown in Fig. 6. The external force is introduced using a stinger

mounted on a LDS V101 electro-dynamical shaker. The applied force is acquired

using a PCB 208C01 1-axial force sensor . Additionally, a Kistler 9317A 3-axial

force sensor was used to acquire the contact forces on body 1. The charge signals

from the 3-axial force sensor are amplified and converted to a voltage with a

Brüel&Kjaer Nexus 2692 charge amplifier and a high-pass/low-pass filter set

at 1 Hz/100 kHz.
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Figure 5: Experimental multibody system with a pin-slot clearance joint

Figure 6: A sketch of a test set-up

The maximum sampling frequency of 51.2 kS/s per channel of the acquisition

card NI 9234 is used to acquire the values of the measured signals and the time

between two consecutive acquired values is ∆t = 1
51200 s. The LDS V101 shaker

is controlled with a NI 9234 output module and the generated signal is amplified

with a LDS PA25E power amplifier.

5.2 Numerical model

Numerical experiments were performed to compare the contact force of the

presented pin-slot clearance joint (PSCJ) model with a revolute clearance joint

(RCJ) and an ideal revolute joint (IRJ).
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An external force vector F0(t) is applied to the body 0 at the location

u0
F defined in the body’s local coordinate system and is modeled as F0(t) =[
F 0
x (t), 0

]T
where F 0

x (t) has the form:

F 0
x (t) =

F0 sin
(
π
tF

t
)
, if t ≤ tF ,

0

(34)

and F0 represents the force amplitude. The inertial frame of reference co-

incides with the pin body’s local coordinate system indexed 1, see Fig 4. The

external applied force F0 was modeled based on the force impulse of the mea-

surement data so that for the selected time interval [0, tF = 0.0391] s the force

impulses are equal [48]. A comparison between the measured external force and

the modeled force is presented in Fig 7. The experimental values represent the

external force that is present when a stinger, mounted on a shaker, impacts with

a body 0 slot To remove the noise and high-frequency structural dynamics, a

central moving average of 301 acquired points (∆T = 301 · 1
51200 ≈ 6 ms) was

used on the experimental and numerical results [49].

Table 1 shows the mass and inertia properties of the bodies for different

types of kinematic constraint (PSCJ, RCJ and IRJ). The geometric properties

of the system are listed in Table 2.

Table 1: Mass properties of the multibody system

PSCJ RCJ IRJ

m0 [kg] 32.54·10−3 32.74·10−3 32.74·10−3

J0 [kg m2] 20.94·10−6 21.40·10−6 21.40·10−6

m1 [kg] 1·10−3 1·10−3 1·10−3

J1 [kg m2] 1·10−6 1·10−6 1·10−6

The parts used in the experiment were machined with a CNC milling process,

and the defined tolerances for the pin diameter and the slot diameters are ±0.05

mm and the geometric tolerance of the flatness of the slot flat section is ±0.05.

The measurements confirmed that these values are within the defined values.

The numerical integration procedure of Eq. (3) is started with the defined

initial conditions q0 as they have a strong impact on the prediction of the
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Figure 7: The x-component of the external force applied to body 0, F 0
x .

Table 2: Geometrical properties of the multibody system

[mm] PSCJ RCJ IRJ

R0
0 / 2.5 /

R1
0 2.45 2.45 /

L0 2 / /

h0 5 / /

u0
P [−49, 0.0765] [−49, 0.076] [−49, 0.076]

u0
R [−47, 0.0765] / /

u1
P [0, 0] [0, 0] [0, 0]

dynamic performance of mechanical systems [2]. The integration process is

performed with the Runge-Kutta-Fehlberg (RKF45) method that has a variable

step size and error control [39]. The variable step size is important due to the

fact that the time of contact is estimated with sufficient precision and when there
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are no contacts present, in the dynamical system, an integration process can use

larger time steps to increase the computational efficiency [50]. To ensure the

constraint violations are kept under control a Baumgarte stabilization method

(BMS) is used [36]. This is implemented within the computational procedure,

as presented in Fig 3.

To ensure unwanted energy gains during the time integration when the con-

tact is detected, a contact-detection methodology is implemented, as suggested

by Flores and Ambrosio [12]. This methodology ensures that the initial pene-

tration depth δ0 is below the user-defined small value and a sufficiently precise

time of contact is determined. The key parameters used for the different models

are shown in Table 3. These parameters are used to solve the dynamics of the

mechanical system.

Table 3: Parameters of the numerical simulation

Width of the slot (contact) W [m] 0.08

Coefficient of restitution cr [/] 0.4

Kinematic coefficient of friction µk [/] 0.51

Module of elasticity E [GPa] 69

Poisson’s ratio ν [/] 0.35

Integration method RKF45

BSM parameter α [34] 5

BSM parameter β [34] 5

Maximum integration step size Hmax [s] 1·10−4

Minimum integration step size Hmin [s] 1·10−12

Integration step size during contact Hcontact [s] 1·10−5

Simulation end time tn [s] 6·10−2

δ0 [m] 1·10−6

The contact forces acquired during the experiment for PSCJ are compared

with the numerical model for each component in Fig. 8 and Fig. 9. The

numerical values of the x component of the contact force in general show good

agreement with the experimental values. One could argue that the experimental

and numerical results should match better, but the discussion in the next section

will show how much different those result could be in a case where different
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kinematic constraints / contact models are employed.

0 10 20 30 40 50 60
t [ms]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

F
1 x

[N
]

PSCJ exp. data
PSCJ model

Figure 8: The x component of the contact force on body 1, F 1
x , for experimental

and numerical data for PSCJ.
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Figure 9: The y component of the contact force on body 1, F 1
y , for experimental

and numerical data for PSCJ.
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6 Discussion

In the previous section an experimentally validated numerical model of the pin-

slot clearance joint (PSCJ) was presented. Here, the numerical results of PSCJ

are compared to an ideal revolute joint (IRJ) and a revolute clearance joint

(RCJ).

The contact forces on body 1 in the x and y directions are shown in Fig.

10, Fig. 11. From the results it is clear that the RCJ and IRJ would result in

significantly different results when compared to the proposed PSCJ joint and

the experimental results, see also Figures 8 and 9.

0 10 20 30 40 50 60
t [ms]
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0
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PSCJ model
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Figure 10: The x component of the contact force on body 1, F 1
x , for different

kinematic constraints.

Figures 10 and 11 show that different types of joints (with clearance) produce

different contact forces: therefore, it is vital to select the appropriate mechan-

ical joint to ensure physical consistency. The RCJ only considers an internal

contact between two cylinders, while the PSCJ has two contact options, i.e.,
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Figure 11: The y component of the contact force on body 1, F 1
y , for different

kinematic constraints.

the contact between a pin and a cylindrical surface and a contact between a pin

and the flat surface of the slot. As presented in Fig. 1 the length of the slot

L enables additional relative movement in the direction of tangent ti. Due to

this extra unconstrained movement a contact force has lower values. For these

two contact options, different contact parameters also have to be considered

(contact stiffness). In the limit case of PSCJ when the value of slot length L is

equal to 0, we obtain a basic RCJ.

With the proposed PSCJ joint a proper contact model is required. As dis-

cussed in the introduction, there are several contact models that can be used.

Here, only some of them are presented in greater detail: the Hertz, Kelvin-Voigt,

Johnson (with and without dissipation) models are compared to the Lankarani-

Nikravesh model. The contact forces when different contact models are used

with the PSCJ joint are shown in Figures 12 and 13. The Kelvin-Voigt contact

model is shown to give the wrong results for this application. The main reason

22



for this deviation of the numerical results is due to linear dependence of Fn

and δ, see Eq. (24), as it does not represent the overall nonlinear nature of an

impact [24].

The Johnson and Hertz contact models are closer to the Lankarani-Nikravesh

model and the experimental results. Before the final impact, which is at a

time around 30 ms, the values of the contact force are similar and the time of

impact is longer, while the contact force at the steady state at the end of the

movement is larger when the energy dissipation is not considered, especially in

the x direction. The Lankarani-Nikravesh contact model is simple to implement

in multibody dynamics code as it introduces an explicit dependence between

Fn and δ and also includes hysteresis damping. The problem of evaluating the

contact stiffness for the Lankarani-Nikravesh model is solved with the Johnson

model. If the experimental results for PSCJ are compared with the contact

forces evaluated with the presented approach, based on Lankarani-Nikravesh

model, a good agreement can be seen.
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Figure 12: The x component of the contact force on body 1, F 1
x , for different

contact models.
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Figure 13: The y component of the contact force on body 1, F 1
y , for different

contact models.
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7 Conclusions

In this work a model of a validated pin-slot joint model with clearance is pre-

sented. Two possible contact positions between the pin and the slot are shown

and the penetration depth is evaluated according to the contact geometry at

each contact position. Based on the pin position in the slot different properties

of the contact models were used to evaluate the contact forces.

The significance of including the clearance was researched numerically and

experimentally. It was found that the proper numerical clearance model results

in a similar response to that measured experimentally. However, without the

proper modeling of clearance (e.g., pin-joint), the contact forces differ signifi-

cantly, compared to the experimentally determined forces.

Numerical experiments were performed on a selected multibody system with

a pin-slot clearance joint where different contact models were used to evaluate

the contact force. The Lankarani-Nikravesh contact model was found to give the

best results, when compared to the experimental observations. Other contact

models (e.g., Kelvin-Voigt) can result in significantly different contact forces

than those measured experimentally .

For the example of a pin-slot clearance joint, this research shows the impor-

tance of experimentally validated numerical modeling.
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