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Abstract

This research is focused on a comparison of the classic and the strain

Experimental Modal Analysis (EMA). The modal parameters (the natu-

ral frequencies, the Displacement Mode Shapes (DMSs) and the damping)

of real structures are usually identified with the classic EMA, where the

responses are measured with motion sensors (e.g., accelerometers). The

strain EMA is a special approach in the field of EMA, where the re-

sponses are measured with strain sensors. Classic EMA is the preferred

method, but strain EMA offers advantages that are important for par-

ticular applications: for example, the direct identification of Strain Mode

Shapes (SMSs), which is important in the vibration-fatigue and damage-

identification models. The next advantage is that the strain EMA can

sometimes be used, for experimental/geometrical reasons, where the clas-

sic EMA cannot. There are also drawbacks: e.g., with strain EMA only,

the mass-normalization of the DMSs and SMSs cannot be performed. This
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study researches the theoretical similarities and differences of both EMA

approaches. Furthermore, the accuracy of both approaches for the case of

a free-free supported beam and a free-free supported plate is investigated.

The classic and the strain EMA were performed with a piezoelectric ac-

celerometer and the piezoelectric strain gauges, respectively. The results

show that the accuracy of the strain EMA results (the natural frequen-

cies, DMSs and the damping) is comparable to the accuracy of the classic

EMA.

Keywords: Experimental modal analysis, strain response, the piezoelectric

strain sensor, strain mode shapes

1 Introduction

The classic Experimental Modal Analysis (EMA) (Ewins (1984); Maia and Silva

(1997); He and Fu (2001); Heylen et al. (2007)) is based on an experimental iden-

tification of the Frequency Response Functions (FRFs), where the responses are

measured with motion sensors (e.g., piezoelectric accelerometer, laser vibrome-

ter) and the excitation is performed with a modal hammer or electrodynamic

shaker. The excitation forces are measured with force transducers. The mea-

sured FRFs are used for the extraction of the modal parameters with an iden-

tification method (e.g., the Ewins-Gleeson method, the Complex Exponential

method) (Ewins (1984); Maia and Silva (1997)). The results of the classic EMA

are the natural frequencies, the damping and the mass-normalized Displacement

Mode Shapes (DMSs); where the term mass normalization is used for the scal-

ing with respect to the orthogonality properties of the mass-normalized modal

matrix (Ewins (1984); Maia and Silva (1997)).

The strain EMA (Bernasconi and Ewins (1989a); Yam et al. (1996); Bernasconi

and Ewins (1989b); Yam et al. (1994)) is a special approach in the field of EMA.

It is based on an experimental identification of the strain FRFs. The excita-

tions are performed in a similar way as in the classic EMA and the responses

are measured with strain sensors. The dynamic strains are usually measured

with strain gauges that are attached to the surface of a tested structure with

a bond. The strain responses can be measured with several types of strain

gauges. For example, in (Bernasconi and Ewins (1989b)), (Cusano et al. (2006);

Hwang et al. (2011)), (Chen and Wang (2004)) and (Kranjc et al. (2013)) the

strain responses were measured with semiconductor strain gauges, Fiber-Bragg

Gratting (FBG) sensors, polyvinylidene fluoride films and piezoelectric strain

gauges, respectively. The experimentally identified strain FRFs are used for

2



the modal-parameter identification using the same methods as in the classic

EMA (Bernasconi and Ewins (1989a); Yam et al. (1996)). The results of the

strain EMA are natural frequencies, DMSs, Strain Mode Shapes (SMSs) and

damping (Bernasconi and Ewins (1989a); Yam et al. (1996)). The identified

DMSs and SMSs cannot be mass-normalized (Bernasconi and Ewins (1989a))

only with the strain EMA. When the DMSs and SMSs are not mass-normalized

they do not match the numerically calculated DMSs, due to the incorrect scal-

ing (Kranjc et al. (2013)). The mass-normalized DMSs are required for the

identification of the spatial properties (mass, stiffness and damping matrices)

of the dynamical system. The mass normalization in the strain EMA can be

performed with the help of the classic EMA (Yam et al. (1996)) or with the

help of mass-change strategy for the strain EMA (Kranjc et al. (2013)). The

advantages of the strain EMA are as follows. It enables an experimental in-

vestigation of the stress-strain distribution (in contrast to the classic EMA,

where numerical/analytical transformations are required). This advantage can

be used in the field of vibration fatigue (Mršnik et al. (2013); Česnik et al.

(2012); Wentzel (2013)) where the discrepancies between the stress/strain re-

sponses of vibrational-fatigue models and the true values lead to the large errors

in the life estimations; therefore, the models have to be validated. This valida-

tion can be made using the classic EMA that requires a transformation from

the motion to the stress responses. Due to the errors in the transformation, the

strain EMA is more suitable for the validation than the classic EMA. As shown

in Yam et al. (1994), the SMSs are more sensitive to the structural local changes

than the DMSs. This advantage can be used for local damage identification at

the structurally critical points. The strain EMA can also be used instead of

the classic EMA to identify the modal parameters when a motion sensor cannot

be used (e.g., the location near the clamped boundary condition with no mo-

tion). There is a lack of research regarding a comparison between the strain and

the classic EMA. When using the strain EMA instead of the classic EMA for

modal-parameter identification, it is important to know the experimental and

theoretical differences, and whether the accuracy of the results is the same as

for the results of the classic EMA.

The article is organized as follows: In Section 2 the theoretical basics and

the differences between the classic and the strain EMA are presented. This is

followed by the experimental comparison, where structures of a free-free sup-

ported beam and a free-free supported plate are analyzed with both principles

in Section 3. The conclusion follows in Section 4.
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2 Theoretical background

2.1 The motion response of a dynamical system

The theory of the motion response of a dynamical system can be found in

Ewins (1984); Maia and Silva (1997); He and Fu (2001). The motion response

is considered on a hysteretically proportionally damped Multiple-Degrees-Of-

Freedom (MDOF) system. The spatial model of the system is written as:

Mẍ(t) + iDx(t) +Kx(t) = f(t) (1)

where the spatial properties M, D and K are the mass, the damping and

the stiffness matrices, respectively. x(t) is the vector of the mass positions

and f(t) is the vector of the excitations. In the case of proportional damping,

the matrix D is proportional to M and (or) K. The spatial properties of the

system can be used for a calculation of the modal parameters of the system.

By considering the modal parameters, the motion steady-state response of the

hysteretically proportionally damped dynamical system can be written in the

frequency domain as:

X(ω) = Φ
[rω2

r(1 + i ηr)− ω2
r
]−1

ΦT F(ω) = H(ω)F(ω) (2)

where X(ω) is the motion steady-state response, Φ is the modal matrix

(matrix of the mass-normalized DMSs), ωr are the natural frequencies, ηr are

the damping loss factors, F(ω) is the vector of the excitation force, H(ω) is

the receptance matrix and [rr] denotes a diagonal matrix. An element of the

matrix contains the information about the receptance between the structure

points j and k, and can be written as:

Hjk(ω) =
N∑
r=1

rAjk

ω2
r − ω2 + i ηr ω2

r

(3)

where rAjk = ϕjrϕkr is the modal constant. There are two important prop-

erties of the receptance matrix. First, the principle of reciprocity Hjk(ω) =

Hkj(ω), which is known as the symmetry of H(ω) and second, the modal con-

stants consistency equations which are described by the following pair of equa-

tions:

rAjk = ϕjr ϕkr (4)

rAjj = ϕ2
jr or rAkk = ϕ2

kr (5)
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The importance of Eq. (4) and (5) will be explained in Section 2.3.

2.2 The strain response of a dynamical system

To research the strain response of a dynamical system, the transformation from

the displacement to the strain field is introduced. The transformation is per-

formed by applying the operator S to the displacement field (Bernasconi and

Ewins (1989a); Zienkiewicz and Taylor (2005)):

S =
1

2
(∇+∇T) (6)

where ∇ is the linear differential operator. To calculate the r-th mass-

normalized Strain Mode Shape (SMS) Φε
r, S is applied to the mass-normalized

DMS Φr (Bernasconi and Ewins (1989a); Yam et al. (1994); Li et al. (1989)):

Φε
r = SΦr (7)

whereΦε
r represents the strains corresponding toΦr. The strain steady-state

response Xε(ω) of a hysteretically proportionally damped continuous system is

obtained by applying the operator S to the equation of the motion response,

Eq. (2) (Bernasconi and Ewins (1989a); Yam et al. (1994); Li et al. (1989)):

Xε(ω) = SX(ω) = Φε
[rω2

r(1 + i ηr)− ω2
r
]−1

ΦT F(ω) = Hε(ω)F(ω) (8)

where Hε(ω) is the strain Frequency-Response Function (FRF) matrix and

Φε is the matrix of the mass-normalized SMSs. Hε(ω) can be writen as (Yam et al.

(1996)):

Hε(ω) =

N∑
r=1

rA
ε

ω2
r − ω2 + i ηr ω2

r

(9)

where rA
ε is the strain modal constants matrix, corresponding to the r-th

mode and can be written as:

rA
ε =



ϕε
1rϕ1r · · · ϕε

1rϕkr · · · ϕε
1rϕNdr

...
. . .

...
. . .

...

ϕε
jrϕ1r · · · ϕε

jrϕkr · · · ϕε
jrϕNdr

...
. . .

...
. . .

...

ϕε
Nsr

ϕ1r · · · ϕε
Nsr

ϕkr · · · ϕε
Nsr

ϕNdr


Ns×Nd

(10)
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where ϕε
jr and ϕkr are the components of Φε

r and Φr, respectively. Nd and

Ns are the sizes of Φr and Φε
r, respectively. Eq. (10) shows that the strain

modal constant matrix is not symmetric (rA
ε
jk ̸=rA

ε
kj); therefore, Hε

jk ̸=Hε
kj .

Hε is, in general, not a square matrix (Yam et al. (1996)).

2.3 The identification of the modal parameters with the

classic approach

The classic EMA (Ewins (1984); Maia and Silva (1997); He and Fu (2001)) is

one of the most frequently used procedures for the experimental identification of

modal parameters; therefore, only the details that are important to this research

are presented. When considering the proportional hysteretic damped structure,

the results of an indirect identification method (e.g., the Ewins-Gleeson identi-

fication method) are the natural frequencies, the damping loss factors and the

modal constants. The modal constants that are identified from the j-the row

and the k-th column of the motion-FRF matrix, denoted as rAj = ϕjr Φr and

rAk = Φr ϕkr, respectively, contain the information about the DMSs.

The mass-normalization of DMSs: To obtain the mass-normalized DMSs,

the normalization procedure (for details, see Ewins and Gleeson (1982)) has to

be performed by taking into account the modal constants consistency equations

(Eq. (4) and (5)). A direct motion FRF (accelerance, mobility or receptance) is

measured by exciting the structure and measuring the motion response at the

same location (j = k). From the direct FRF the modal constants rAjj = ϕ2
jr

(rAkk = ϕ2
kr) are identified and used for the calculation of the j-th (k-th)

components of the mass-normalized DMSs ϕjr (ϕkr). The mass-normalized

DMSs Φr are calculated using the following equation:

Φr = ± rAj

ϕjr
= ± rAk

ϕkr
(11)

In general, the sign of Φr can be positive or negative.

2.4 The strain EMA

The strain EMA (Bernasconi and Ewins (1989a); Yam et al. (1996)) is similar

to the classic EMA. During the modal testing the structure is excited with a

known force at the point k and the response is measured with a strain sensor at

the point j. The time signals of the excitation and the strain response are used
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for an estimation of the strain FRF (Hε
jk) using the FRF estimators (Maia and

Silva (1997)) for the classic EMA. The strain EMA can be done in a way so as

to identify the DMSs and SMSs (see Fig. 1).

To identify the DMSs the strain FRFs are measured in such a way that the

strain-response measurement point j is fixed and the structure is excited at the

points 1−Nd (see Fig. 1). The results of the modal testing are strain FRFs that

belong to the j-th row of the strain FRF matrix: Hε
j1, . . . , H

ε
jNd

. The modal

parameters are identified with the methods that were originally developed for

the classic EMA. When an indirect identification method is used, the natural

frequencies ωr, the strain modal constants rA
ε
jk and the damping are identified

from each measured Hε
jk. From the row of the strain FRF matrix the j-th row

of the matrix of strain modal constants is identified: rA
ε
j1, . . . , rA

ε
jNd

. It can

be written as:

rA
ε
j = ϕε

jr Φr (12)

Eq. (12) shows that the strain modal constants, that are identified from the

row of Hε, contain the information about the DMSs. The identification of the

SMSs is done in a similar way as the identification of the DMSs. During the

modal testing, the strain FRFs are measured in such a way that the excitation

point k is fixed and the strain response is measured at the points 1−Ns. The

results of the modal testing are the strain FRFs that are in the k-th column

of the strain FRF matrix: Hε
1k, . . . , H

ε
Nsk

. From each measured strain FRF the

natural frequencies, the strain modal constants and the damping are identified.

The identified strain modal constants are the k-th column of the strain modal

constant’s matrix: rA
ε
1k, . . . , rA

ε
Nsk

. It can be written as:

rA
ε
k = Φε

r ϕkr (13)

Eq. (13) shows that the strain modal constants that are identified from the

column of Hε contain the information about the SMSs.

The mass-normalization of DMSs and SMSs: It is clear from Eq. (10)

that the consistency equations (Eq. (4) and (5)) are not valid for the strain

modal constants. The strain modal constants that are identified from the

direct strain FRF (excitation and the response at the same structure point

(j = k)), denoted as rA
ε
jj = ϕε

jr ϕjr, are not the square of mass-normalized

DMS components ϕjr as in the classic EMA (see section 2.3); therefore, the

mass-normalization (scaling procedure) of the DMSs and SMSs cannot be per-

formed with the strain EMA (Bernasconi and Ewins (1989a); Yam et al. (1996)).
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Identification of:
-natural frequencies      ,
-DMSs                    ,
-damping.

Estimating the -th row ofj Estimating the -th column ofk

Identification of:
-natural frequencies      ,
-SMSs                    ,
-damping.

Identification of DMSs

Strain EMA

Excitation points

j-th strain response
measuring point

Experimental testing

Strain response
measuring points

Experimental testing

k-th excitation point

Identification of SMSs

Fig. 1: The strain EMA

The mass-normalization can be performed with the help of the classic EMA

that requires the use of a motion sensor. A direct motion FRF is measured at

the point k and used to identify the k-th components of Φr (see Section 2.3)

denoted as EMAϕkr. The subscript EMA indicates that EMAϕkr is identified using

the classic EMA. The mass-normalization of the DMSs and SMSs is performed

using the following equations:

Φr = ± rA
ε
j EMAϕkr

rAε
jk

(14)

Φε
r = ± rA

ε
k

EMAϕkr
(15)

Regarding the sign of Φr in Eq. (14), the same comment is valid as for

Eq. (11). If one would like to identify Φε
r, that are orientated corresponding to

Φr, the signs in Eq. (14) and Eq. (15) have to be the same.
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The mass normalization can also be performed with the mass-change strat-

egy for the strain EMA (Kranjc et al. (2013)), which is based on the structure

modification by mass adding.

3 Experimental comparison of the strain and

the classic EMA

The comparison between the classic and the strain EMA was performed on

structures of a beam and a plate.

3.1 The measurement equipment

During the modal testing the responses are measured with a piezoelectric ac-

celerometer (B&K-4508 B 001) and a piezoelectric strain gauge (PCB 740B02).

The excitations are performed with a modal hammer (B&K-8206). Since in

the field of structural dynamics, the piezoelectric accelerometer and the modal

hammer are well known, here we will only provide more details about the piezo-

electric strain gauge.

The piezoelectric strain gauge is described in Dosch (1999) and Rovšček et al.

(2012). It consists of a quartz sensing element and microelectronic signal con-

ditioning, which are integrated into a titanium housing (see Fig. 2). The di-

mensions of the sensor are 5.1 × 15.2 × 1.8 mm. The sensor uses a two-wire

direct-current power supply (ICPr). The sensitivity of each sensor is calibrated

before it is shipped to the customer. The sensor is attached to the test structure

by an adhesive bond. An inappropriate attachment of the sensor can change

the sensor’s sensitivity. To achieve accurate measurements the attaching has to

be performed carefully in accordance with the manufacturer’s instructions.

One of the important characteristics of the sensor is its ability to resolve

extremely small strain signals. The broadband noise floor of the sensor is

0.0006 µε. The measurements are accurate when the wavelength of the stress

in a tested structure is large compared to the length of the sensor. The manu-

facturer proposes that the wavelength of the stress should be at least ten times

the length of the sensor. The strain measurement frequency limit for steel (re-

garding the wavelength) is approximately 33.6 kHz. The inherent transverse

sensitivity of the sensor is equal to −1.9 % and the sensitivity to the in-plane

shear strain is zero.
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Fig. 2: The piezoelectric strain gauge PCB 740B02

3.2 Experimental testing on the beam

The first experimental testing was performed on a 1 m × 0.03 m × 0.01 m

steel beam. As shown in Fig. 3, 11 equally spaced points were chosen, at which

the components of the DMSs are identified (the components of the SMSs are

identified only at the points 2,4,6,8,10) using the strain and the classic EMA.

Only the first five bending modes around the z-axis were considered; these result

in displacements in the y-axis and normal strains in the x-axis . The boundary

conditions of the structure were free-free, which were achieved by suspending

the beam from two elastic strings. The strings were attached at the nodes

of the first DMS (near the structure points 3 and 9). The structure vibrated

transversely to the strings and the natural frequencies of the motion rigid modes

were low in comparison to the structure’s first natural frequency; therefore, the

effects of the attaching are negligible. To make the comparison, both the classic

and the strain EMA were performed.

3.2.1 The classic EMA

To identify the modal parameters with the classic EMA the modal testing was

performed with the response being measured by the accelerometer at point 1

(Fig. 3), while the structure was excited with the modal hammer at the points

1-11 (the row of the accelerance matrix was measured). The response was mea-

sured at the point where the deflections corresponding to each of the first five

modes are significant. The tested structures are considered as lightly damped;
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Fig. 3: The tested beam

therefore, the modal-parameter identification was performed with the Ewins-

Gleeson method (Ewins and Gleeson (1982)). This method is used for the iden-

tification of lightly damped structures (the tested structure is lightly damped)

assuming the hysteretic damping model. The authors of the method consider

that the DMSs of such structures are real (with phase shifts of 0 or 180 degrees).

With the classic EMA the natural frequencies, the mass-normalized DMS and

the damping loss factors of the beam were identified. The classic EMA results

are considered in Section 3.2.3.

3.2.2 The strain EMA

The strain gauges were attached at the points 2, 4, 6, 8 and 10. To obtain

the information about the modal parameters with the strain EMA, the strain

response was measured at the point 8 (Fig. 3), where the strains corresponding

to each of the first five modes are significant. The excitations were performed in

the same way as in the classic EMA (Section 3.2.1). The measured strain FRFs

are the row of the strain FRF matrix. To show how it is possible for the strain

EMA to identify the SMSs, the responses were measured at the points 2, 4, 6,

8 and 10, while the structure was excited at the point 1. The measured strain

FRFs are the column of the strain FRF matrix. The natural frequencies, the

strain modal constants and the damping loss factors were identified with the

same identification method as in the classic EMA (Section 3.2.1). The accuracy

of the modal identification was analyzed by the strain FRF reconstructions.

An example of the reconstruction is shown in Fig. 4, where the reconstructed
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Hε
88 (the strain FRF between the response and the excitation at the point 8)

is plotted together with the measured one. Fig. 4 shows that the reconstructed

Hε
88 is in good agreement with the measured one.

From the strain modal constants the DMSs (rA
ε
j=8) and SMSs (rA

ε
k=1) were

obtained (see Section 2.4). The identified DMSs and SMSs are plotted in Fig. 5

together with the shapes that were calculated with the ANSYS Finite-Element

Method (FEM) software. The finite-element model was built from 0.01 m-long

BEAM189 elements. The mass normalization of the shapes cannot be performed

with the strain EMA (Section 2.4) only; therefore, the shapes in Fig. 5 are

normalized by making the largest peak or valley of the DMSs and SMSs equal

to unity. The figure shows that the experimentally identified DMSs (Fig. 5(a-e))

and SMSs (Fig. 5(f-j)) match the calculated ones well. The identified natural

frequencies and the damping loss factors can be found in Section 3.2.3.

Attaching the strain sensor in a way that is not in accordance with the

manufacturer’s instructions can result in changes to the sensor’s sensitivity.

However, the changed sensitivity does not affect the accuracy of the identified

natural frequencies, the damping loss factors and the DMSs (see Eq. (9) and

(10)). The sensitivity changes affect the accurate identification of the SMSs.

0 100 200 300 400 500 600 700

f [Hz]

10−10

10
−9

10−8

10
−7

10−6

10−5

10
−4

10−3

H
ε 8
8
[ε
N

−
1
]

Fig. 4: The measured (- - -) and the reconstructed (—) strain FRF

3.2.3 The comparison of the classic and strain EMA results

The results of the strain EMA were compared to the results of the classic EMA.

First, the natural frequencies were compared. This comparison showed that the
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Fig. 5: The identified (×) and the calculated (—) DMSs and SMSs

natural frequencies that were identified from the strain FRFs and the acceler-

ances have the same values at the frequency resolution of 0.1 Hz. They occur

at 52.4 Hz, 143.9 Hz, 281.7 Hz 465.8 Hz and 694.9 Hz.

Next, the comparison of the DMSs followed. This was performed by a Modal

Assurance Criterion analysis (MAC) (Allemang (2003)), where the identified

DMSs (the results of the classic and the strain EMA) were compared to the

calculated values using the FEM. The DMSs, that were identified with the

classic and the strain EMA are compared to the calculated ones in Fig. 6(a)

and Fig. 6(b), respectively. The MAC analysis shows that the DMSs that were
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identified with the strain and classic EMA are in good agreement with the

calculated DMSs. A comparison of Fig. 6(a) and 6(b) shows that the accuracy

of the identified DMSs is approximately the same for both methods.
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Figure 6: MAC comparison of the identified DMSs and the calculated ones; (a)

results of the classic EMA, (b) results of the strain EMA

Finally, a comparison of the damping was made. This involved comparing

the average damping loss factors that were identified from the measured acceler-

ances (denoted as η̃r) and the strain FRFs, where the response was measured at

the point 8 (denoted as η̃εr). The highest and the lowest values of the damping

loss factors were not considered in the calculation. The comparison is shown in

Tab. 1, where δη are the relative deviations between η̃εr and η̃r. Tab. 1 shows

that η̃εr and η̃r are approximately the same, with the highest deviation being

14



5 %.

Table 1: Comparison of the ηr that were identified with the strain and the

classic EMA for the beam
r η̃εr η̃r δη

1 0.002210 0.002187 1.1 %

2 0.001171 0.001191 -1.6 %

3 0.001138 0.001137 0.1 %

4 0.000575 0.000548 5.0 %

5 0.000511 0.000493 3.7 %
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3.3 Experimental testing on the plate

The second experimental test was performed on the 0.4 m × 0.32 m × 0.03 m

steel free-free supported plate. As shown in Fig. 7, 6× 5 equally spaced points

were chosen (points 1-30) where the components of the DMSs will be identified.

The free-free boundary conditions were achieved in a similar way as in the

case of the beam by suspending the structure from two elastic strings. The

attachment points of the strings are shown in Fig. 7. Only the first five modes

were considered; these vibrate out of the xy-plane and result in normal and

shear strains (stresses) (see Leissa (1969)). The same measurement equipment

was used as in the case of the beam. To make the comparison, both the classic

and the strain EMA were performed.
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Fig. 7: The plate structure
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3.3.1 The classic and the strain EMA

To obtain the information about the DMSs with the classic EMA the motion

response was measured at the point 26 (Fig. 7), while the structure was excited

with the modal hammer at the points 1-30. To obtain the information about the

DMSs with the strain EMA the normal-x-component of the strain response was

measured at the point 31 and the structure was excited in the same way as in the

classic EMA. The sensors (accelerometer and strain gauge) were attached at the

points where the responses (motion and x-component of strain) corresponding to

each of the first five modes are significant. The modal-parameter identification

was performed with the same identification method as in the case of the beam.

The identification was validated by FRF reconstructions. The example of the

reconstruction is shown for the strain FRF between the points 31 (response)

and 26 (excitation) Hε
31 26 (Fig. 8). Fig. 8 shows that the reconstructed and the

measured strain FRFs are in good agreement. The DMSs that were identified

with the strain EMA (rA
ε
j=31) are plotted in Fig. 9 together with the calculated

ones using the FEM. The calculation was made with Ansys software, where

the finite-element model was built from 0.008 m × 0.008 m-sized SHELL181

elements. The mode shapes are scaled to unity in a similar way as in Fig. 5.

Fig. 9(a)-(e) show the comparison of the DMSs components for all the measuring

points. Fig. 9(f)-(j) show a detailed comparison at the location y=-0.08m.

Fig. 9 shows that the DMSs that are identified with the strain EMA are in good

agreement with the calculated ones. The remaining results of the strain EMA

and the classic EMA are considered in Section 3.3.2.
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Fig. 8: The measured (- - -) and the reconstructed (—) strain FRF
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Fig. 9: The identified (—) and the calculated (×) DMSs

3.3.2 The comparison of the results

The results were compared in a similar way as in the case of the beam. First,

the identified natural frequencies were compared. The identical values of the

natural frequencies were identified with the classic and the strain EMA. The

natural frequencies occur at 80.1 Hz, 98.2 Hz, 166.7 Hz, 192 Hz and 224.2 Hz.

The frequency resolution of the results is 0.1 Hz. What follows is a comparison

of the DMSs with the MAC analysis. The DMSs, that were identified with the

classic EMA and the strain EMA are compared to the calculated ones by FEM

in Fig. 10(a) and Fig. 10(b), respectively. Fig. 10 shows that the identified
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DMSs accurately match the calculated ones and that approximately the same

accuracy was achieved with both principles. Finally, the comparison of the

damping was made. It was performed in a similar way as in the case of the

beam. The average damping loss factors were calculated from the FRFs where

the highest and the lowest five values were not considered in the calculation.

The comparison is shown in Tab. 2. Tab. 2 shows that approximately identical

damping loss factors were identified with the classic and the strain EMA. The

largest deviation is less than 4 %.
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Figure 10: MAC comparison of the identified DMSs and the calculated ones;

(a) result of the classic EMA, (b) result of the strain EMA
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Table 2: The comparison of the ηr, that were identified with the strain and the

classic EMA for the plate

r η̃εr η̃r δη

1 0.001455 0.001514 -3.9 %

2 0.000637 0.000635 0.4 %

3 0.001496 0.001549 -3.5 %

4 0.000832 0.000847 -1.7 %

5 0.001506 0.001501 0.4 %

4 Conclusion

In this research two approaches to the identification of the structure’s modal

parameters were compared. In the field of structural dynamics the modal param-

eters of the real structures are usually identified with the classic Experimental

Modal Analysis (EMA). The less-known strain EMA is a special approach in the

field of EMA that can be used to identify the natural frequencies, the damping

of the Displacement Mode Shapes (DMSs) and the Strain Mode Shapes (SMSs).

The advantages of the strain EMA are that it can be used for an experimental

investigation of the stress-strain distribution, which is important for the analy-

sis of the vibration fatigue and the damage identification. It can also be used

instead of the classic EMA for the identification of the modal parameters. The

mass-normalization of the DMSs and SMSs cannot be performed with the strain

EMA only.

In this article we looked at whether the results of the strain EMA can be com-

pared to the results of the classic EMA. The experimental tests were performed

in such a way that, during the modal testing, the responses were measured with

a piezoelectric accelerometer and piezoelectric strain gauges. The strain and

the classic EMA were performed on the beam and the plate structures. The

results of the testing were the natural frequencies, the DMSs and the damping

loss factors. To show the additional application possibility of the strain EMA,

the SMSs of the beam were also identified.

The comparison of the experimental results showed the following: First,

identical natural frequencies were identified with both principles. Next, the

quality of the identified DMSs (not mass-normalized) is the same for both prin-

ciples and, finally, both principles give approximately the same values for the

damping loss factors.

The research showed that the strain EMA can be used instead of the classic
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EMA for an accurate identification of the natural frequencies, the displacement

mode shapes and the damping, when the appropriate measuring equipment is

used.
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Česnik M and Slavič J and Boltežar M (2012) Uninterrupted and accelerated

vibrational fatigue testing with simultaneous monitoring of the natural fre-

quency and damping. Journal of Sound and Vibration 331(24):5370–5382.

Dosch JJ (1999) Piezoelectric strain sensor. Proceedings of the 17th Interna-

tional Modal Analysis Conference (IMAC-XVII) 537–542.

Ewins DJ and Gleeson PT (1982) A method for modal identification of lightly

damped structures. Journal of Sound and Vibration 84(1): 57–79.

Ewins DJ (1984) Modal Testing: Theory and Practice. Research Studies Press,

John Wiley and Sons, Lechtworth, New York etc.

21



He J and Fu ZF (2001) Modal Analysis. Butterworth-Heinemann, Oxford,

Boston etc.

Heylen W and Lammers S and Sas P (2007) Modal Analysis Theory and Testing.

Haverlee: Katholieke Universiteit Leuven.

Hwang GS and Ma CC and Huang DW (2011) Dynamic strain measurements

of a cantilever using the improved bonding fiber Bragg grating. Journal of

Vibration and Control 17:2199–2212.
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Rovšček D and Slavič J and Boltežar M (2012) The use of strain sensors in

an experimental modal analysis of small and light structures with freefree

boundary conditions. Journal of Vibration and Control 19(7): 1072-1079

Yam LY and Leung TP and Li DB and Xue KZ (1996) Theoretical and ex-

perimental study of modal strain analysis. Journal of Sound and Vibration

191(2): 251–260.

Yam LY and Li DB and Leung TP and Xue KZ (1994) Experimental study on

modal strain analysis of rectangular thin plates with small holes. Proceedings

of the 12th International Modal Analysis Conference (IMAC-XII) 1415–1421.

Wentzel H (2013) Fatigue test load identification using weighted modal filtering

based on stress. Mechanical Systems and Signal Processing Epub ahead of

print 6 July 2013. DOI:10.1016/j.ymssp.2013.06.014

22



Zienkiewicz OC and Taylor RL (2005) The Finite Element Method Set. Elsevier

Science.

23


