The response of a linear single-degree-of-freedom oscillator to periodic excitation

Task: determine the steady-state response of the oscillator to the given oscillation of the base. Clue: the kinematics of the base can be decomposed into a Forurier series.

Figure 1: Oscillator.

Figure 2: Base kinematics.

Oscillator data:

$$
\begin{array}{ll}
m=2 \mathrm{~kg} & \text { mass } \\
k=1800 \frac{\mathrm{~N}}{\mathrm{~m}} & \text { spring constant } \\
\delta=0.1 & \text { damping ratio } \\
\omega_{0}=\sqrt{\frac{k}{m}} & \omega_{0}=30 \mathrm{rad} / \mathrm{s} \text { resonance frequency } \\
d=2 \delta \omega_{0} \mathrm{~m} & d=12 \frac{\mathrm{Ns}}{\mathrm{~m}} \text { damping coefficient } \\
a=20 \mathrm{~mm} & \text { excitation amplitude } \\
t=1 \mathrm{~s} & \text { excitation period }
\end{array}
$$

The equation of motion for the oscillator in Fig. 1 is:

$$
\begin{equation*}
m \ddot{x}+d \dot{x}+k x=\frac{1}{2} k y+d \dot{y} . \tag{1}
\end{equation*}
$$

Excitation kinematics of the base, shown in Fig. 2 can be written in a Fourier series:

$$
\begin{equation*}
y(t, N)=\frac{a}{2}-\frac{a}{\pi} \sum_{n=1}^{N} \frac{1}{n} \sin (2 \pi n t) . \tag{2}
\end{equation*}
$$

The approximate kinematics of the base with respect to the number of considered terms in equation (2) is depicted in Fig. 3 .
where:

```
t time [s]
    N number of considered terms of the series
```

The particular solution of the equation of motion (1) can be calculated by substituting the base kinematics with its Fourier series:

$$
\begin{equation*}
X_{\mathrm{p}}(t, N)=\frac{a}{4} \sum_{n=1}^{N}\left[C_{1}(n) \sin (\omega(n) t)+C_{2}(n) \cos (\omega(n) t)\right]+\sum_{n=1}^{N}\left[D_{1}(n) \sin (\omega(n) t)+D_{2}(n) \cos (\omega(n) t)\right], \tag{3}
\end{equation*}
$$

where:

$$
\begin{aligned}
\omega(n) & =2 \pi n \\
A m p l_{-} K(n) & =-\frac{1}{2} \omega_{0}^{2} \frac{a}{n \pi} \\
A m p l_{-} D(n) & =-\frac{2 a d}{m} \\
C_{1}(n) & =\frac{A m p l_{-} K(n)\left(\omega_{0}^{2}-\omega^{2}(n)\right)}{\left(\omega_{0}^{2}-\omega^{2}(n)\right)^{2}+\left(2 \delta \omega_{0} \omega(n)\right)^{2}} \\
C_{2}(n) & =\frac{A m p l_{-} K(n) \cdot 2 \delta \omega_{0} \omega(n)}{\left(\omega_{0}^{2}-\omega^{2}(n)\right)^{2}+\left(2 \delta \omega_{0} \omega(n)\right)^{2}} \\
D_{1}(n) & =\frac{A m p l_{-} D(n) \cdot 2 \delta \omega_{0} \omega(n)}{\left(\omega_{0}^{2}-\omega^{2}(n)\right)^{2}+\left(2 \delta \omega_{0} \omega(n)\right)^{2}} \\
D_{2}(n) & =\frac{A m p l_{-} D(n)\left(\omega_{0}^{2}-\omega^{2}(n)\right)}{\left(\omega_{0}^{2}-\omega^{2}(n)\right)^{2}+\left(2 \delta \omega_{0} \omega(n)\right)^{2}}
\end{aligned}
$$

Figure 3: Base kinematics approximated by the Fourier series.

The effect of the number of considered terms to the particular solution is shown in Figures 4 and 5 .

Figure 4: Oscillator response.

Figure 5: Oscillator response

