The response of a linear single-degree-of-freedom oscillator to
periodic excitation

Task: determine the steady-state response of the oscillator to the given oscillation of the base. Clue: the

kinematics of the base can be decomposed into a Forurier series.
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Figure 1: Oscillator. Figure 2: Base kinematics.
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Oscillator data:

m =2 kg mass

k = 1800 % spring constant

0=0.1 damping ratio
k

wo =4/ = wo = 30 rad/s resonance frequency

d=20wgm d=12 % damping coefficient
a =20 mm excitation amplitude

t=1s excitation period
The equation of motion for the oscillator in Fig. [I] is:
.. . 1 .
mi + di + kx = iky—i—dy. (1)
Excitation kinematics of the base, shown in Fig. [2| can be written in a Fourier series:

a1
y(t,N) —Zf sin(2mnt). (2)
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The approximate kinematics of the base with respect to the number of considered terms in equation
is depicted in Fig.

t time [g]
where: . .
N number of considered terms of the series

The particular solution of the equation of motion can be calculated by substituting the base kinematics

with its Fourier series:

N N
X,(t,N) = % Z[Cl (n) sin(w(n)t) + Co(n) cos(w Z )sin(w(n)t) + Da(n) cos(w(n)t)], (3)
n=1 n=1
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Figure 3: Base kinematics approximated by the Fourier series.



The effect of the number of considered terms to the particular solution is shown in Figures [d] and [f]
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Figure 4: Oscillator response.
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Figure 5: Oscillator response.



