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Abstract

When estimating a structure’s fatigue life during vibrational test the stress

frequency-response function (SFRF) to the base excitation is required. The

response to this base excitation can be numerically obtained by solving the

equilibrium equations for each frequency of interest. In this research we pro-

pose a new method, that can be used to obtain the SFRF of a base-excited

structure using the modal model of the unconstrained structure, only. By

further developing the idea of a structural modification using the response

function this research significantly reduces the computation time and the

amount of data sent to the fatigue-analysis software. The new method is pre-

sented on two numerical examples: a simple beam structure and a Y-shaped

structure. Using numerical examples, the effects of the modal truncation,

the matrix singularity and the damping are discussed.
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1. Introduction

The base excitation is considered when the excitation is prescribed in

terms of the kinematic motion as an acceleration or displacement profile

instead of the excitation force at the structure’s drive points. The base

excitation of the structure is typically performed with an electro-dynamic

shaker and represents a standard practice in environmental and seismic test-

ing, regularly used in automotive, aerospace, electronics and civil-engineering

industry [1–3]. When performing environmental testing in order to ver-

ify structure’s durability the damage to the structure is introduced by the

structure’s dynamic stress response [4] and can lead to fatigue failure. The

time-to-failure can be estimated using various fatigue analyses of the stress

frequency-response function (SFRF) [5, 6]. However, the structure’s dynamic

response to the base motion is different from the response to the force exci-

tation. This research introduces a new method for obtaining the structure’s

response to base motion from the response to the force excitation of the un-

constrained structure.

With numerical finite-element models it is possible to obtain the SFRF

in the case of base excitation by solving the equilibrium matrix equation and

then calculating the nodal stress from the nodal displacement solution for the

nodes and the frequency range of interest [7]. As the size of the numerical

model, the frequency range of interest and the frequency resolution increase

the calculation time and the amount of data that needs to be collected and

sent to the vibrational fatigue postprocessor increases as well. To reduce

the calculation time and to avoid assembling a large amount of data only

the modal model can be exported and the SFRF can be obtained using the
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mode-superposition method [8]. However, the mode-superposition method

can be utilized for the force excitation only. Currently, for the case of base

excitation the frequency response can only be obtained directly (by using

mass, stiffness and damping matrices). This problem arises due to the differ-

ent excitation forces, that are in the case of base excitation inertial. However,

base excitation is very frequent type of loading in environmental and seis-

mic testing. Consequently, much research in the field of the base excitation

has been done with the applications to the experiment. Béliveau et al. [9]

identified modal parameters from the base excitation of the dynamic system.

Furthermore, by measuring the interface forces Füllekrug and Sinapius [3]

obtained mass-normalised mode-shapes and generalized and effective masses

of the dynamic system with the multi-axial base excitation. The problem of

verifying the interface properties of the constrained system was studied by

Blair [2] with the use of different free-free configurations as alternatives to

base-excitation testing.

The theory of the dynamic modification and coupling of structures [8, 10]

is a standard approach to predicting the changes in the response of modi-

fied or coupled structures from the response of the initial structure or the

substructures being coupled. Generally, two approaches can be applied for a

dynamic modification, i.e., the modal approach and the impedance approach

[11–13]. This research focuses on the impedance method, which was intro-

duced by Crowley et al. [14] and further developed by Jetmundsen et al. [15]

with a new structural modification using the response function (SMURF)

definition, which requires the inversion of only one transmissibility matrix.

The SMURF technique is convenient when there is no mass and stiffness
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information about the structure or its modification available. This was the

case in the research of Massey et al. [16], where the response of the modified

H-frame was predicted from the experimentally obtained frequency-response

functions of the initial H-frame and the additional beam. Ren et al. [17]

introduced a generalized frequency-substructuring definition to extend the

applicability of the frequency-based modification. Recently, a reformula-

tion of the frequency substructuring using the dual-domain decomposition

method was presented by de Klerk et al. [18]. This formulation was adopted

by D’Ambrogio et al. [19] to perform a frequency-based decoupling of the

structure and by Voormeeren et al. [20], who studied the uncertainty prop-

agation when performing a frequency-based substructuring. However, the

classic method [15] is still being used, for example, for frequency decoupling

[21] and for the study of common issues arising during the experimental ap-

proach to frequency-based substructuring [22, 23].

As presented, for example, by Salvini et al. [24], besides the analysis

of the modifications, which change the structure’s mass and stiffness prop-

erties, the SMURF can also be used to predict the influence of additional

constraints added to the structure by knowing the frequency response of

the unconstrained structure only. Furthermore, Avitabile [25] compared the

mode shapes of the additionally constrained structure obtained using the

SMURF method with the analytical mode shapes. With the introduction of

the dual-domain decomposition method [18], the definition of the constraints

can be given with a boolean constraint matrix.

In [18, 24, 25] the authors assumed a zero-response for the constraints and

focused on the response of the constrained structure to the force excitation.
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This research presents a SMURF technique, where the constrained degrees

of freedom (DOFs) are excited with known kinematics. With this, it is pos-

sible to predict the frequency response of the constrained structure using the

SMURF method, when the excitation is given in terms of the base motion as

well as the excitation force. This research predicts the displacement and the

stress response of the kinematically excited structure where only the natural

frequencies and mode shapes of the unconstrained structure are required.

This manuscript is organized as follows. In Section 2 the theory of the

extended SMURF technique is given, which can be used for the kinemat-

ically excited structures. In Section 3 this method is applied to a simple

beam and to a larger finite-element model, where the influence of the modal

truncation error, the matrix singularity and the effect of structural damping

are discussed. The last section presents the conclusions.

2. Theoretical background

Most often the dynamic response of the structure is observed when it is

excited with an applied force. When a structure is excited with a given base

motion (e.g., during vibration fatigue testing, earthquake) the information

about the force applied to the constraints is not available. Consequently,

the basic theory of the structure’s response to the base motion differs from

the classic force-excitation approach [8]. In this Section the main differences

between the force- and base-excitation responses are shown that indicate

the motivation for the study that follows. In it, the theory of the extended

SMURF technique is deduced with respect to the applied base excitation.
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2.1. Displacement response to the force excitation

When a viscously damped MDOF dynamic structure is excited with an

applied force the equilibrium equations can be written as [8]:

Mẍ + C ẋ + Kx = f , (1)

where M, C and K are mass, damping and stiffness matrices, respectively. x

denotes the vector of total displacements and f denotes the excitation force

vector. The solution to the Eq. (1) is given as the relation between excitation

forces and response DOFs:

x = H(ω) f , (2)

where ω denotes frequency and H(ω) denotes the structure’s receptance ma-

trix. The jk-th element of the receptance matrix H(ω) gives the structure’s

total response at the j-th degree of freedom when the structure is excited at

the k-th degree of freedom. Accordingly, the jk-th element of the receptance

matrix H(ω) can be calculated as [8]:

Hjk(ω) =
N∑
r=1

 φjr φkr

ωr ξr + i
(
ω − ωr

√
1 − ξ2r

) +
φ∗
jr φ

∗
kr

ωr ξr + i
(
ω − ωr

√
1 − ξ2r

)
 ,

(3)

where ωr denotes the r-th natural frequency, ξr the damping loss factor of the

r-th natural frequency, φjr the jr-th element of the mass-normalised modal

matrix φ and ∗ a complex conjugation. Often, damping loss factors are given

in terms of the Rayleigh proportional damping factors α and β and for the

case of the viscous damping model the following relation holds [8]:

ξr =
α

2ωr

+
β ωr

2
. (4)
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2.2. Displacement response to the base excitation

An alternative possibility to excite the dynamic structure is to assign

a certain kinematic motion at the given DOF. Fig. 1 shows a typical base-

excitation setup, where the base displacement is denoted by x0(t). The vector

of relative displacements y(t) is [10]:

y(t) = x(t) − g x0(t), (5)

where x(t) is the vector of the total displacements and g is the direction

vector of the structure’s degrees of freedom.

For a steady-state response to the base excitation the equations of motion

of the viscously damped structure are [10]:

(
K− ω2M + iωC

)
(x− x0 g) = ω2 x0Mg. (6)

Since (x − x0 g) = 0 holds for the DOFs at the excitation base it is obvi-

ous that in terms of relative displacements the homogenous form of Eq. (6)

provides eigenvalues (i.e., natural frequencies and mode shapes) identical to

the eigenvalues of the structure with a fixed base. Therefore, we can define

cH(ω) = (K− ω2M + iωC) −1 as the receptance matrix [10] of the con-

strained structure with a fixed base, where −1 denotes the inverse matrix.

Eq. (6) can be rewritten in the form of the transmissibility matrix Q(ω) [10]:

Q(ω) =
y

x0
= ω2 cH(ω)Mg. (7)

From this equation it is evident that the mass matrix M and the direction

vector g must be known in order to predict the structure’s transmissibility in

the case of a base excitation. M and g are not always attainable, especially
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when only the response model or an incomplete modal model of the structure

are available. To overcome the problem of an unknown scaling of (Mg) for

the transmissibility matrix, Ewins [10] suggests a correction using an exper-

imentally obtained calibration factor. Additionally, in studies by Razeto et

al. [1] and Mayes and Bridgers [26] different methods for mass-scaling using

experimental base-excitation testing are presented. In any case, when only

the modal properties of the constrained structure are known, an additional

step is required to predict the structure’s transmissibility for base excitation,

whether by obtaining the spatial properties M and g or by additional exper-

imental work.

This study presents a new method for obtaining the base-excitation re-

sponse from the structure’s modal properties only (e. g., natural frequencies,

mode shapes and damping loss factors), therefore making the spatial proper-

ties (Mg) or additional experimental measurements redundant. The method

introduced is based on the structural modification [25] and is presented in

the following section.

2.3. Structural modification using response functions

One of the impedance-based methods for performing the structural mod-

ification is the SMURF (structural modification using response functions)

method [15]. The SMURF method was already used to predict a response

to the force excitation of a structure with additional constraints [13, 24, 25].

In this research a new evaluation of the SMURF method is introduced that

includes the imposed kinematics of the added constraints.
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2.3.1. Constrained and unconstrained structure

As indicated with a simple beam in Sec. 2.2 the modal model of the base-

excited structure is equal to the modal model of the structure with a fixed

base. A new approach introduced in this study enables a prediction of the

response to base excitation from the response of the unconstrained structure

to the force excitation only.

When performing the modification analysis with the SMURF technique

either the response model or the (incomplete) modal model of the initial

structure is considered to be known and the response of the modified struc-

ture is being searched for. With a structural modification we introduce ad-

ditional constraints to the initial structure, to which the base excitation is

applied. Similarly, in this deduction the unconstrained structure (Fig. 2(a),

denoted with u) is regarded as an initial state and the constrained, base-

excited structure (Fig. 2(b), denoted with c) is regarded as the modified

structure.

Let us divide the unconstrained structure’s (Fig. 2(a)) DOFs into two

groups: the constrained c and the unconstrained u DOFs. The DOF is

regarded as constrained if the base excitation is applied directly to it. Ac-

cordingly, the response of the structure can be rewritten as: xc

xu

 =

 uHcc
uHcu

uHuc
uHuu

  fc

fu

 , (8)

where xc and xu denote the response of the constrained and unconstrained

DOFs, respectively. Eq. (8) presents the basic idea of the SMURF technique.

Commonly, the authors [24, 25] at this point introduce an assumption

xc = 0, therefore neglecting the base-excitation component and focusing on
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the force excitation response. In this research the response of the constrained

DOFs is regarded as non-zero and known, which complies with the concept

of vibration testing.

2.3.2. Displacement response to the base excitation using SMURF

When a base excitation is applied to the constrained DOFs the condition

xc = x0 holds, and by refactoring Eq. (8) it follows:

x0 = uHcc fc + uHcu fu, (9)

xu = uHuc fc + uHuu fu. (10)

From Eq. (9) the unknown force fc can be written as:

fc = uH−1
cc x0 − uH−1

cc
uHcu fu. (11)

From Eqs. (10) and (11) the absolute response of the constrained structure

follows:

xu =
(
uHuc

uH−1
cc

)
x0 +

(
uHuu − uHuc

uH−1
cc

uHcu

)
fu. (12)

Considering the relative displacement definition in Eq. (5) the relative re-

sponse of the base-excited structure can be written in the final form as:

y =
(
uHuc

uH−1
cc − g̃

)︸ ︷︷ ︸
Q (ω)

x0 +
(
uHuu − uHuc

uH−1
cc

uHcu

)︸ ︷︷ ︸
cH (ω)

fu. (13)

In Eq. (13) g̃ is defined as:

g̃ =


g1/NC · · · g1/NC

...
. . .

...

gNU
/NC · · · gNU

/NC

 , (14)
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where gi is the i-th element of the vector g and NC and NU are a number of

constrained and unconstrained DOFs, respectively. The shape of the matrix

g̃ is [NU , NC ].

Eq. (13) gives a full description of the structure with additional con-

straints for the force fu and also for the base excitation x0. If Eq. (13) is

compared with Eq. (7) it is clear that the extended SMURF technique intro-

duces the calculation of the scaled transmissibility function Q (ω) to the base

excitation without any information about the mass matrix of the structure.

When the Eq. (13) is used for the calculation of the relative displacement

response to the base excitation only the modal model of the unconstrained

structure is required to obtain matrices uHuc and uHcc with Eq. (3). This

greatly reduces the time and amount of data needed to compute the re-

sponse to the base excitation compared to the solving the coupled matrix

equations (Eq. (6)) for discrete excitation frequencies used by finite-element

software. Additionally, for the calculation of the displacement response to

the base excitation only the direct point receptance matrix uHcc and the

receptance matrix uHuc between the constrained and unconstrained DOFs

must be known. When the displacement response of the constrained structure

cH(ω) to the excitation force fu is investigated, the additional information

of the receptance uHuu between unconstrained DOFs should be available.

2.3.3. Stress response to the base excitation using SMURF

An internal mechanical stress is important for a fatigue-life estimation

during vibration tests [27]. Therefore, a similar deduction to the one in

Sec. 2.3.2 can be proposed to obtain the stress transmissibility of the con-

strained structure from the stress transmissibility of the unconstrained struc-
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ture. The relation between the excitation force and the stress of the uncon-

strained structure can be defined as:

σ = u
σH(ω) f , (15)

where u
σH(ω) is the stress transmissibility matrix of the unconstrained struc-

ture. The stress transmissibility function can be obtained from Eq. (3), where

the the elements φjr and φkr of the modal matrix φ describe stress values at

certain mode shapes instead of the displacement or rotation values. With a

known stress transmissibility we can deal with vibrational fatigue in case of

a random or harmonic excitation.

An equation similar to Eq. (8) can be written for the stress response; how-

ever, because the additional constraints do not imply known stress values for

constrained DOFs it is not reasonable to separate the stress σ into σc and σu.

Consequently, the stress response Eq. (15) can be rewritten as:

σ =
[

u
σHc

u
σHu

]  fc

fu

 . (16)

Considering the definition of the substitute force (Eq. (11)) into Eq. (16) the

stress response of the constrained structure can be obtained with:

σ =
(
u
σHc

uHcc
−1
)
x0 +

(
u
σHu − u

σHc
uHcc

−1 uHcu

)
fu. (17)

Interestingly, to predict the stress response of the constrained structure to

the base or force excitation we must have information about σH and H, i.e.,

the stress and displacement transmissibility functions, respectively. How-

ever, when only the base excitation x0 is applied to the structure (fu = 0),

the stress response at a particular location is obtained by knowing the stress
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transmissibility u
σHc between the constrained DOFs and the unconstrained

locations and the direct point transmissibility matrix uHcc of the constrained

DOFs, only. The two methods presented in Eqs. (13) and (17) can be used

in a numerical or experimental analysis of the dynamic system.

An additional advantage of the presented method is the significant reduc-

tion in the calculation time when compared to the time needed to perform

a harmonic analysis of the structure subjected to a base excitation. This is

even more so when the stress response is obtained with the finite-element

method, where the stress response for each discrete frequency point is cal-

culated by expanding the displacement response solution that additionally

extends the calculation time.

2.3.4. Singularity of direct point receptance matrix

The presented SMURF method has an important numerical limitation

when the matrix uHcc (Eqs. (13) and (17)) is ill-conditioned [11, 17]. This

occurs when c DOFs of the unconstrained structure (Fig. 2) are located

on a region with high local stiffness, thus have similar response functions

which appear in uHcc matrix as linearly dependent rows. Inverting the ill-

conditioned uHcc results in erroneous response prediction of the modified

structure. Urgueira [11] addressed this problem by identifying the indepen-

dent DOFs using singular value decomposition and reducing the shape of the

uHcc matrix to the [r× r], where r is the rank of uHcc and, coincidentally, a

number of independent coordinates. However, the rank of uHcc depends on

the chosen threshold value and cannot be uniquely determined for practical

cases.

In this study the fixed surfaces of the constrained structure are assumed
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to be rigid and the c DOFs are described with the base motion x0. Logi-

cally, there are no interactions between the fixed c DOFs of the constrained

structure. Assuming this, there is no need to obtain the interactions be-

tween c DOFs of the unconstrained structure. Additionally, the number of

mutually independent non-zero elements of the excitation vector x0 equals

to the number of excitation directions nexc in which the base excitation is

applied. If the rank r of the matrix uHcc equals to the number of excitation

directions nexc then the matrix uHcc and vector x0 can be reduced to the

sizes of [nexc × nexc] and [nexc × 1], respectively. With an appropriate shape

reduction the matrix uHcc becomes well-conditioned and therefore eliminates

the problem of matrix inversion. However, to ensure that r = nexc the rigid

connection between c DOFs of the unconstrained structure must be applied

along with the additional constraints of c DOFs in non-excited directions.

The presented approach of the uHcc rank reduction to the fixed value of

r = nexc is demonstrated in a numerical experiment in Section 3.2.

As stated, an assumption of rigid fixation must be fulfilled. For the case

of numerical evaluation that is performed in this research the rigid fixation

can be easily applied. However, experimentally it is hardly possible to assure

an ideal rigid fixation therefore one should be aware of the possible problems

that arise due to the non-rigid fixation [12].

3. Numerical experiment

The numerical analyses of the extended SMURF technique, for a calcu-

lation of the displacement and stress response to the base excitation, and

introduced in Sec. 2, is presented here for two different numerical examples.
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Firstly, a simple beam with a rectangular cross-section is researched to com-

pare the results obtained with the SMURF approach introduced here to those

obtained by solving the equilibrium matrix equation (6) for each frequency of

the excitation. Secondly, a Y-shaped structure with two weights and a hole

is used to show the applicability of the method for larger numerical models,

where the singularity of the direct point transmissibility uHcc is present. In

both cases the analysis will be focused on the transmissibility function Q(ω)

to base excitation, which is the original contribution of this research.

3.1. Simple beam

Two cases of a beam with a rectangular cross-section of 10 mm × 30 mm

and with a length of 800 mm are analyzed. In the first case (A, Fig. 3) the

additional constraints y(l = 0 mm) = 0 and dy(l = 0 mm)/ dl = 0 are intro-

duced at one position only. Based on this simple modification of the beam,

the consistency of the extended SMURF for the base-excited structure is

presented.

In the second case (B, Fig. 4) the beam is constrained at three distinct

locations (at the left end with y(l = 0 mm) = 0 and dy(l = 0 mm)/ dl = 0,

40 mm from the left end with y(l = 40 mm) = 0 and at the right end with

with y(l = 800 mm) = 0); this modification is proposed to show the gen-

eral applicability of the extended SMURF method to an arbitrary set of

additional constraints. In case B the SMURF method was applied to the

free-free beam (B1) and to the beam with initial constraint (B2) described

with dy(l=0 mm)/ dl=0. In this way the influence of the number of added

constraints to the transmissibility function of the modified structure can be

researched.
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The numerical model of the beam was made from 20 beam elements of

length 40 mm with three DOFs at each node. The beam was considered

undamped (the influence of damping is studied later). In the numerical ex-

ample of the beam all the natural frequencies and mode shapes were used

for the SMURF technique to avoid the effect of truncation error [25].

In both cases of fixation (Figs. 3 and 4) the transmissibility in terms of

displacement was observed at the node 20 (l= 760 mm) and the transmissi-

bility in terms of stress at the node 10 (l=360 mm). From Figs. 5 and 6 it is

clear that in the modification case A the absolute and relative displacement

transmissibility of the modified structure coincide with the reference value

and, therefore, show the appropriateness of Eqs. (12) and (13). Additionally,

the predicted stress-transmissibility function, shown in Fig. 7, is in good ac-

cordance with the theoretical stress transmissibility, obtained by a harmonic

analysis of a finite-element model with the given base excitation. The rela-

tive error, shown in Figs. 5 - 7 can be assigned to small discrepancies of the

natural frequencies and anti-resonances that inherently lead to large errors

in resonant and anti-resonant areas.

A good prediction of the resonance and anti-resonance values was ex-

pected, since all the modes were included in the initial transmissibility calcu-

lation with no truncation error. The presented numerical example shows an

accurate prediction of the transmissibility values of the base-excited struc-

ture, obtained without any information about the mass matrix or the exper-

imentally derived scaling factor.

The predicted transmissibility of the beam modification case B) is shown

in Figs. 8 and 9. By comparing the predicted and theoretical transmissibility
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it is evident that the SMURF method gives a good estimation, even when the

base excitation is applied at several locations. This conclusion is applicable

when the transmissibility functions of the constrained DOFs are not alike

and consequently the response matrix uHcc is not singular. By observing

the relative error in Fig. 8 or the absolute displacement transmissibility near

the first natural frequency (Fig. 9) it is evident that the method gives more

accurate results when the number of additional constraints is lower, regard-

less of the truncation error.

3.2. Y-shaped structure

To demonstrate some practical problems with of the use of the SMURF

method for the prediction of the structure’s stress transmissibility to the base

excitation a Y-shaped specimen, shown in Fig. 10, is analyzed. The specimen

was custom designed to perform the vibrational fatigue tests [28]. Since the

vibrational fatigue life is directly related to the stress profile at the critical

location, only the stress transmissibility will be studied. Here, the Y-shaped

specimen is regarded as a damped, linear structure and the numerical model

is used to obtain the natural frequencies and mode shapes.

The uHcc reduction approach, introduced in Sec. 2.3.4, was adopted for

the transmissibility prediction of the base-excited Y-shaped specimen, fixed

at the surface marked in Fig. 10 and excited in all three translational DOFs;

therefore x0 = [1, 1, 1]T . The von Mises equivalent stress at the location,

marked in Fig. 10, was considered as an observed stress-response quantity.

The analysis of the Y-shaped specimen demonstrates the applicability of the

new method to larger numerical models. Furthermore, two additional as-
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pects are studied: the influence of uHcc matrix reduction and the influence

of the structural damping on the stress-transmissibility prediction.

First, the influence of uHcc matrix reduction on avoiding the singularity

was observed. In order to avoid a deviation of the prediction as a result

of the damping influence, the structure was, in this case, regarded as un-

damped and the first 30 natural frequencies and mode shapes were used for

the SMURF method. The transmissibility thus obtained is compared with

the theoretical transmissibility in Fig. 11, from which we can conclude that

the reduction of the uHcc does not introduce a significant error to the SFRF

prediction.

However, structural damping is always present and must be considered

when the stress transmissibility of the structure is used for a calculation

of the vibration fatigue life. Three different sets of proportional damping

factors were used: high damping ([ α, β ] = [ 0, 5·10−7 ]), low damping

([ α, β ] = [ 0, 1·10−7 ]) and no damping ([ α, β ] = [ 0, 0 ]). In Fig. 12 the

transmissibility functions for all three damping sets are shown.

From observing the transmissibility near the first natural frequency it is

evident that the amplitudes of the predicted transmissibility agree very well

with the theoretical values. Nevertheless, the truncation error is shown as the

frequency shift between the theoretical and the predicted natural frequency

and is present in the case of the damped structure as well. The prediction

of the transmissibility of the damped Y-specimen near the fifth natural fre-

quency is less accurate. This can be attributed to the higher truncation error.

From the observation of transmissibility near the fifth natural frequency it

can be concluded that the inclusion of damping into the SMURF method
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does not introduce a significant additional error to the transmissibility pre-

diction.

This observation highlights another advantage of the developed technique.

The definition of the structure’s receptance Eq. (3) introduces a possibility to

apply the damping in the form of proportional or modal damping. When the

transmissibility in the case of base excitation is obtained by solving the equi-

librium equation (6), only proportional damping can be applied [8]. With

the presented method of the base-excitation transmissibility calculation the

damping can be given in terms of modal damping for each natural frequency

without any additional error being introduced.

When comparing the calculation times required to compute the stress

transmissibility to the base excitation the new SMURF method proves to

be significantly faster. In the case of the Y-shaped specimen, where the

frequency range was given as 0 Hz to 3000 Hz, with a 1-Hz frequency resolu-

tion, the extended SMURF method takes 7 seconds, compared to the method

implemented in commercial FEM software, which takes 240 seconds.

4. Conclusions

In this research a structural modification using frequency-response func-

tions has been applied and extended to predict the transmissibility of the

constrained structure when it is kinematically excited by base motion. With

the presented method any spatial DOF or stress value can be regarded as the

response quantity. For the prediction of the transmissibility in the case of

base excitation only the natural frequencies and mode shapes are required;

this makes this method convenient when no information about the mass and
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the stiffness matrices is available.

The developed method is applied to a numerical experiment and the trans-

missibility prediction is very good for the displacement as well as for the stress

response. Furthermore, due to the simple calculation of the transmissibility

functions of the unconstrained structure the estimation of the structure’s

response can be fast, when compared to the harmonic analysis of the finite-

element model. This can prove to be convenient when a large number of

frequency points are required for the response description.

Finally, the method is also applicable in cases when structural damping

is present. The damping can be given in terms of proportional or modal

damping, therefore increasing the accuracy of the transmissibility near nat-

ural frequencies. This is a valuable advantage when the stress response is

used to estimate the vibrational fatigue life, since the response amplitude

near natural frequencies introduces the most damage to the structure.
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Figure 1: Base excitation of the cantilever beam with denoted displacements at the can-

tilever tip.
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Figure 2: a) Unconstrained and b) constrained structure.
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Figure 3: Case A) beam with an added constraint at one location.
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Figure 4: Case B) beam with added constraints at three locations.
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Figure 5: Case A; Absolute displacement transmissibility x20/x0 and a relative error.
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Figure 6: Case A; Relative displacement transmissibility y20/x0 and a relative error.
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Figure 7: Case A; Stress transmissibility σ10/x0 and a relative error.
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Figure 8: Case B; Stress transmissibility σ10/x0 and a relative error.
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Figure 9: Case B; the error of modification method at first natural frequency.
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Figure 10: Model of Y-shaped specimen.
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Figure 11: Stress transmissibility of the Y-shaped specimen with neglected damping.
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Figure 12: Stress transmissibility of a Y-shaped specimen with high, low and no damping

close to the first and the fifth natural frequency; (—) theoretical and (- - -) predicted

transmissibility.
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