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Abstract

A bimetallic strip consists of two different metal pieces that are bonded
together. Due to the different coefficients of thermal expansion, exposing
the strip to temperature induces thermal stresses that cause the structure
to bend. Most often, incremental finite-element methods that introduce
element nodal coordinates have been successfully applied to analyze the
thermally induced vibrations in such systems. The exposure of these
bimetallic strips to high temperatures results in large deflections and de-
formations, where the effects of the rigid-body motion and large rota-
tions must be taken into account. For classic, non-isoparametric elements
such as beams and plates the incremental methods do not result in zero
strains under arbitrary, rigid-body motion. Therefore, in this paper a
new model of a bimetallic-strip is proposed based on a coupled thermo-
structural analysis using the absolute nodal coordinate formulation. The
applied, non-incremental, absolute nodal coordinate formulation uses a
set of global displacements and slopes so that the beam and the plate el-
ements can be treated as isoparametric elements. In order to simulate
the bimetallic strip’s dynamic response, the formulation of the shear-
deformable beam element had to be extended with thermally induced
stresses. This made it possible to model the coupled thermo-structural
problem and to represent the connectivity constraints at the interface be-
tween the two strips of metal. The proposed formulation was verified by
comparing the responses using a general-purpose finite-element software.

1 Introduction

Bimetallic strips are used in various engineering applications, such as thermome-
ters, thermostats, miniature circuit breakers, etc [1–4]. Most bimetallic sys-
tems are constructed by bonding together two strips with different coefficients
of thermal expansion. When heated, the so-called active component expands
more than the passive one, causing the bimetallic strip to bend. This effect is

1



mainly used for the fabrication of temperature-controlled, residual-current cir-
cuit breakers with overcurrent protection. The triggering function is performed
by a bimetallic plate element, which has to deform within a given time to gener-
ate a force and trigger the switching mechanism. Recently, thermally activated
bimetallic microbeams have been the mainstays of MEMS technology [5]. As
electrothermal bimetal actuators have the advantage of a large force and dis-
placement under a low driving voltage [6], they have been effectively applied to
micromachined valves and pumps [7].
The first model of the bimetallic beam was developed by Timoshenko [8]. The
models presented in [9–11] are extensions of the Timoshenko model and propose
a uniform temperature distribution and loading during the stress-strain calcu-
lation. In the classic handbook [12] the beam-theory solution for the deflections
and stresses of a bimetallic strip is presented. Since 1960 many investigators
applied numerical, mainly finite-element, methods to analyze the thermally in-
duced vibrations of bimetallic structures. Usually, bimetallic strips are subjected
to high temperatures that result in large displacements and deformations [1].
Moreover, due to their high operating speeds the effects of the inertial forces
must be taken into account. Therefore, the aim in the field is to present an effi-
cient and reliable formulation to model the dynamic responses of such systems.
Several finite-element formulations have been proposed for the large displace-
ment and deformation of flexible bodies. Incremental finite-element formula-
tions that introduce element nodal coordinates have been successfully applied for
large-deformation analyses. It is important to note that for non-isoparametric
elements such as beams and plates the incremental methods do not result in
zero strains under arbitrary rigid-body motion. To overcome this problem
Shabana [13] proposed a non-incremental, absolute nodal coordinate formula-
tion (ANCF) where the set of coordinates consists of global displacements and
slopes [14–16]. Using this set of coordinates the beam and plate elements can
be treated as isoparametric elements and lead to zero strain under arbitrary
rigid-body motion. Within the formulation several plate and beam finite ele-
ments were developed [17–19] that enable the analysis of structures subjected
to large rotations and deformations. A two-dimensional shear deformable beam
element has been introduced by Omar and Shabana [19]. This element uses
a continuum mechanics approach to derive elastic forces can suffer from vol-
umetric Poisson’s locking, thickness locking and shear locking [20, 21]. The
Poisson’s locking can be avoided for thin beams by setting the Poisson ratio to
zero, otherwise, the correction terms are needed as proposed by Sopanen and
Mikkola [22]. As shown by Gerstmayr and Shabana [21] the combined thickness
and shear locking can be avoided by introducing the additional shape function.
Possible alternatives to eliminate locking phenomena are the redefied polyno-
mial expansions with a reduced integration procedure [20] or order locking-free
shear beam elements [23–25].Within ANCF it is also possible to implement the
internal damping mechanisms based on continuum mechanics approach that
dissipates the energy only when the system experiences some deformation [26].
As the ANCF formulation is relatively recent, it has received little attention
regarding coupled thermo-structural problems. In [27] an ANCF formulation
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for the plate element is proposed that accounts for the aerothermoelastic be-
havior under thermal loading. For a simple Euler-Bernoulli beam the coupled
thermo-structural analysis is presented in [28].
In this paper a new model of the bimetallic strip based on the ANCF formula-
tion is presented. The individual strip of metal is modeled by a two-dimensional,
shear-deformable beam element, originally proposed by Omar and Shabana [19]
with the inclusion of the additional shape function to avoid the locking phe-
nomena [21]. In order to simulate the dynamic response of bimetallic structures
the formulation of the shear-deformable beam element [19] is extended to ac-
count for the thermally induced stresses. A uniform temperature field within
the metal strip is proposed, whereas the thermal load is applied in the axial
direction. The developed, coupled, thermo-structural, shear-deformable beam
element made it possible to model the connectivity constraints at the interface
between two adjacent strips and to predict the dynamic response under thermal
loading. The dynamic response of the developed bimetallic strip model is com-
pared with a general-purpose, finite-element software ANSYS using isoparam-
teric brick elements. Finally, the applicability of the developed numerical model
is demonstrated on a bimetallic strip subjected to high temperatures that cause
large deformations and displacements to the structure.
This paper is organized as follows. In Section 2 the model of a bimetallic strip is
presented together with the inclusion of thermal loading in the proposed beam
element. Section 3 presents the verification and the applicability of the devel-
oped numerical model. Finally, the conclusions are drawn in Section 4.

2 Introduction of the thermal effect to the shear-
deformable beam element

Bimetals are made of two strips of metals with different coefficients of thermal
expansion that are bonded together. This difference enables the flat bimetallic
strip to bend when heated up or cooled down. Here, the bimetallic strip is
modeled as a system of planar shear-deformable beam elements [19] using the
ANCF formulation. As the introduction of the thermal loading to the beam
model is based on the continuum-mechanics approach, first the formulation of
the shear-deformable beam element is presented.
Vector r that represents an arbitrary point p on the beam element (Fig. 1) can
be written as:

r = Se , (1)

where S is the shape function of the shear-deformable beam element:

S =
[
s1I s2I s3I s4I s5I s6I s7I

]
, (2)

The variable I represents the identity matrix of size 2x2 and the shape functions
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Figure 1: Shear deformable beam element.

si are defined as:
s1 = 1− 3α2 + 2α3,
s2 = L(α− 2α2 + α3),
s3 = H(1− α2)β,
s4 = 3α2 − 2α3,
s5 = L(−α2 + α3),
s6 = Hα2β,
s7 = H Lβ(α− α2),

(3)

where α = x
L , β = y

H , L is the element length, H is the element thickness and
x, y are the element coordinates. In Eq. (1) the vector of the element nodal
coordinates can be written as:

e =
[

rT
∣∣
x=0

rT
x

∣∣
x=0

rT
y

∣∣
x=0

rT
∣∣
x=L

rT
x

∣∣
x=L

rT
y

∣∣
x=L

rT
yx

∣∣
x=0

]T
,

(4)
where rT

∣∣
x=0

, rT
∣∣
x=L

are the global displacements of the nodes and rT
x

∣∣
x=0

,

rT
y

∣∣
x=0

, rT
x

∣∣
x=L

, rT
y

∣∣
x=L

are the global slopes at the nodes and rT
yx

∣∣
x=0

is the

change over x of the gradient rT
y

∣∣
x=0

. The kinetic energy of the beam element
is defined as follows:

T =
1

2

∫
V

ρṙTṙdV =
1

2
ėT

(∫
V

ρSTSdV

)
ė =

1

2
ėTMė , (5)

where M is a constant-mass matrix defined as:

M =

∫
V

ρSTSdV. (6)

The variable V is the element volume and ρ is the density of the beam material.
The expression for the elastic forces is deduced according to the deformation
gradient:

J =
∂r

∂x
=

[
∂r1
∂x

∂r1
∂y

∂r2
∂x

∂r2
∂y

]
=

[
S1xe S1ye
S2xe S2ye

]
, (7)
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where Six = ∂Si

∂x , Siy = ∂Si

∂y and Si is the i-th row of the element shape function.
The Lagrangian strain tensor εm can be written in the form:

εm = (JTJ− I) =

[
eTSae − 1 eTSce
eTSce eTSbe − 1

]
, (8)

where I is the identity matrix and the variables Sa, Sb and Sc are defined as:

Sa = ST
1xS1x + ST

2xS2x, (9)

Sb = ST
1yS1y + ST

2yS2y, (10)

Sc = ST
1xS1y + ST

2xS2y. (11)

The strain tensor is symmetrical and can be written as:

ε =
[
ε1 ε2 ε3

]T
, (12)

where the components of the strain vector are:

ε1 =
1

2
(eTSae − 1), (13)

ε2 =
1

2
(eTSbe − 1), (14)

ε3 =
1

2
(eTSce). (15)

The general expression for the strain energy is written using the strain vector ε
and the stress vector σ as:

σ =
[
σ1 σ2 σ3

]T
, (16)

U =
1

2

∫
V

σTε dV. (17)

Using the constitutive equations, the relation between stress and strain can be
obtained:

σ = Eε, (18)

where E is the matrix of the elastic constants of the material. For an isotropic,
homogeneous material, the matrix E can be expressed in terms of Lame’s con-
stants λ and µ:

E =

 λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 2µ

 . (19)

Using Eqs. (18) and (19), the strain energy can be rewritten as:

U =
1

2

∫
V

εTEε dV. (20)
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The vector of the elastic forces Qe is deduced using the strain energy U :

QT
e =

∂U

∂e
= eTK. (21)

The variable K presents the stiffness matrix:

K = (λ+ 2µ)K1 + λK2 + 2µK3, (22)

where its sub-parts are defined as:

K1 =
1

4

∫
V

(
Sa1(eTSae − 1) + Sb1(eTSbe − 1)

)
dV, (23)

K2 =
1

4

∫
V

(
Sa1(eTSbe − 1) + Sb1(eTSae − 1)

)
dV, (24)

K3 =
1

4

∫
V

(
Sc1(eTSce − 1)

)
dV (25)

and
Sa1 = Sa + ST

a ,

Sb1 = Sb + ST
b ,

Sc1 = Sc + ST
c .

(26)

Finally, the equation of motion for the beam element can be written as:

Më + Qe = Qext, (27)

where Qext is the vector of generalized external forces and Qe is the vector of
elastic forces given by:

Qe = Ke (28)

The inclusion of the thermal effect in the shear-deformable beam element has
not yet been presented in the literature; therefore, a detailed formulation is
given. It is assumed that the temperature field along the beam element is
homogeneous. This can be considered for the majority of bimetallic strips where
the temperature field is the result of the differential current passing through
the element. The change of the temperature within the element is in direct
correlation with the deformations. As the bending deformation of the bimetallic
strip is mainly governed by the axial strain, the thermal load is only applied
in this direction. Therefore, the strain vector due to the thermal load can be
written as:

εT =
[

∆TαT 0 0
]T
. (29)

Here, ∆T is the change in the temperature field and αT is the coefficient of
thermal expansion. By using Eq. (29) in Eq. (18) it is possible to rewrite the
relation between the stress and the strain as:

σ = E (ε− εT ) , (30)
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Considering Eq. (30) and Eqs. (18)-(21), it is possible to deduce the parts of
the stiffness matrix K1 and K2 that account for the thermal load in the axial
direction:

K1 =
1

4

∫
V

[
Sa1(eTSae− 2 ∆TαT − 1) + Sb1(eTSbe − 1)

]
dV, (31)

K2 =
1

4

∫
V

[
Sa1(eTSbe − 1) + Sb1(eTSae − 2 ∆TαT − 1)

]
dV. (32)

The part of the stiffness matrix K3 remains the same and is given by Eq.
(25). Using the proposed procedure it is possible to introduce the thermal
loading into the shear-deformable beam element, which is essential to represent
the bimetallic effect. The resulting stiffness matrix is highly non-linear with
complex and extensive expressions that define its elements.

3 Formulation of the bimetallic-strip model

The model of the bimetallic strip is based on the thermo-structural, shear-
deformable beam element by introducing the connectivity constraint between
two adjacent beam elements (Fig. 2). The equality of displacement is proposed
at the location of the connection nodes in order to represent the line contact
between two strips of metal. The constraint equations can be written as:

C1 = ri(ξ = 0, η = 0.5)− rj(ξ = 0, η = −0.5) (33)

C2 = ri(ξ = 1, η = 0.5)− rj(ξ = 1, η = −0.5) (34)

Hi

ix jx

ih jh

L

Hj

element i element j

connection point

Figure 2: Connection points between two beam elements.
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As usual, the discretization of the bimetallic strip is performed along its
length, while the connectivity constraints between the two flexible beam ele-
ments must be introduced as presented in Fig. 3. First, the equality of the
displacement must be considered:

C3 = ri(ξ = 1, η = 0)− ri+1(ξ = 0, η = 0), (35)

C4 = rj(ξ = 1, η = 0)− rj+1(ξ = 0, η = 0) (36)

and, secondly, the equality of rotation with respect to the ξ and η coordinates:

C5 =
∂

∂ξ
ri(ξ = 1, η = 0)− ∂

∂ξ
ri+1(ξ = 0, η = 0, ) (37)

C6 =
∂

∂ξ
rj(ξ = 1, η = 0)− ∂

∂ξ
rj+1(ξ = 0, η = 0), (38)

C7 =
∂

∂η
ri(ξ = 1, η = 0)− ∂

∂η
ri+1(ξ = 0, η = 0), (39)

C8 =
∂

∂η
rj(ξ = 1, η = 0)− ∂

∂η
rj+1(ξ = 0, η = 0). (40)

element i + 1 element j + 1

element i element j

connection
between
i and i+1

connection
between
j and j+1

Figure 3: Connectivity constraints along the length of the bimetallic strip
segment.

The presented connectivity constraints enable the representation of the bimetallic-
strip model using flexible bodies. Along the thickness of the bimetallic strip the
connectivity between the adjacent beam elements i and j is proposed at the
element nodal coordinates (ξ = 0, ξ = 1). Note that it would be possible to
introduce additional connectivity nodes along the beam elements in order to
more realistically represent the welded bonding line contact between the two
metallic strips. However, the application of additional connectivity nodes along
the beam length would require higher-order element functions, as otherwise a
numerically induced stiffness is introduced to the system. Although the connec-
tivity constraints are applied only at the element nodal points, a relatively good
convergence of the proposed bimetallic-strip model can be observed, as shown
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in section 4.
The equations of motion for the beam element can be written as:

Mj ëj + Ke︸︷︷︸
−Qj

f

= Qj
e. (41)

The system of equations of motion, including all the beam elements in the
bimetallic strip and the constraint equations describing the connectivity con-
straint, finally has the shape:[

M CT
e

Ce 0

]{
ë
λ

}
=

[
Qf + Qe

Qd

]
, (42)

where M is the constant-mass matrix, Ce is the Jacobian of the constraint
equations and λ is the vector of Lagrange multipliers. The vector Qe is the
generalized force vector that includes external forces, Qf is the generalized
force due to the stiffness, and Qd is obtained through differentiation of the
constraints:

Qd = −∂ (Ceė)

∂e
ė. (43)

The presented formulation can be extended to three-dimensional analysis by
using 3D shear deformable beam elements as they are presented in [21, 29].
This would require the redefinition of constraint equations by introducing an
additional connectivity constraint between adjacent element in the z direction.
However the strain vector given by Eq. (29) would remain the same.

4 Verification of the bimetallic-strip numerical
model

In this section a bimetallic strip clamped on one side and subjected to thermal
loading is considered (Fig. 4a). The simulations were performed proposing a
standard bimetallic strip TB177 (DIN 1715) with the material properties de-
fined in Table 1.

First, the mesh-convergence analysis is performed in order to assess the con-
vergence of the solution with respect to the mesh refinement. The influence of
the number of elements is determined by computing the displacement error at
the free end of the strip (point A) with respect to the reference model with 20
elements.

err =
1

N

N∑
i=1

xi − xi, 20elem
xi, 20elem

(44)

The simulations are performed in the time interval t ∈ [0, 0.005] s where the
strip segment is uniformly exposed to the temperature profile presented in Fig.
4b with a maximum temperature of 200◦C. It is clear (Fig. 5) that the error
decreases exponentially with respect to the number of elements. Due to the
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Figure 4: Numerical simulation of bimetallic strip; a) Numerical model; b)
Temperature profile.
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Figure 5: The error of the point A displacement versus the number of elements.

high-order shape function a relatively small number of elements can provide
high accuracy of the solution. Consequently, all the forgoing simulations will be
performed using a discretization with 20 beam elements. The verification study
was conducted by comparing the displacement response with a general-purpose,
finite-element software ANSYS. The reference finite-element model was meshed
with SOLID186 brick elements. The contact between the strips of metal was
modeled using TARGE170 and CONTA173 elements. The transient structural
analysis was conducted by considering large deflections and rotations. Hence,
the rigid-body effect (e.g., large rotation) is taken into account; however, the
strains are assumed to be small. The comparison of the responses at point
A between the developed ANCF model and the ANSYS finite-element model
are presented in Fig. 6. Good agreement between the two models confirms
the adequacy of the proposed bimetallic-strip model using the ANCF-coupled,
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Table 1: The bimetallic strip TB 1577 (DIN 1715) material and geometric
parameters.

Parameter Symbol Value
Passive component 1 FeNi36 (invar)
Active component 2 FeNi20Mn6

Length l1, l2 0.034 m
Width w1, w2 0.005 m

Thickness t1, t2 0.0005 m
Density ρ1 7750 kg/m3

ρ2 8055 kg/m3

Young’s Modulus E1 200 MPa
E2 145 MPa

Poisson’s ratio µ1 0
µ2 0

Thermal expansion coefficient α1 2.85 × 10e−5 K−1

α2 1.2 × 10e−6 K−1

0.000 0.001 0.002 0.003 0.004 0.005
Time [s]

0.000

0.002

0.004

0.006

0.008

D
is

pl
ac

em
en

t
[m

]

ANCF n=20 FEM

Figure 6: Comparison of displacements at point A.

thermo-structural formulation. Moreover, the comparison of the full-field dis-
placements along the strip length (Fig. 7) additionally demonstrates the validity
of the developed bimetallic-strip model. In order to show the applicability of
the developed numerical model of the bimetallic strip (ANFC formulation), the
system is exposed to a temperature profile (Fig. 4b) with an increased maximum
temperature Tmax = 600◦C. The resulting displacement for three different time
points is presented in Fig. 8. In this case the beam elements are exposed to
large deflections and deformations. Moreover, the rigid-body motions and the
large rotations have a significant influence on the system’s dynamic response.
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Figure 7: Comparison of displacements of the bimetallic strip (Tmax = 200◦C);
a) t = 1 · 10−4 s, b) t = 5 · 10−4 s, c) t = 9 · 10−4 s.
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Figure 8: Displacement of bimetallic strip (Tmax = 600◦C); a) t = 1 · 10−4 s,
b) t = 5 · 10−4 s, c) t = 9 · 10−4 s.

5 Summary and conclusions

In this paper a new model for a bimetallic strip based on the ANCF formu-
lation is presented. The basic model of a shear-deformable beam element was
extended in order to account for the thermally induced stresses in the axial direc-
tion. Considering a uniform temperature distribution along the beam element,
a derivation of the stiffness matrix is presented that accounts for the thermal
loading. A numerical verification of the proposed model is performed by show-
ing the convergence of the solution. The verification study was conducted by
comparing results with a general-purpose, finite-element software where classic
isoparametric brick elements were used. It was demonstrated that a relatively
small number of high-order beam elements can effectively predict the dynamic
response of bimetallic structures. Moreover, using the proposed coupled thermo-
structural formulation the beams in the bimetallic-strip model can be treated as
isoparametric elements. Therefore, the presented formulation of the bimetallic
element results in zero strains under arbitrary rigid-body motion and enables
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an exact modeling of the rigid-body inertia, which is not the case when using
the classic beam finite-element formulation.
The presented approach to model bimetallic structures can be applied also to
model general composite structures. In order to properly present such struc-
tures also the adhesive between layers should be modeled as a layer with properly
defined material properties.
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