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Using displacement identification via high-speed cameras is a non-contact, full-field tech-

nique for characterizing the dynamic properties of engineered structures. Achieving reliable

measurements of structural deformation through conventional Digital Image Correlation (DIC)

requires a well-defined spatial gradient in two orthogonal directions within an image subset of

pixels. However, DIC is susceptible to the aperture problem, which leads to an ill-conditioned

optimization problem. An example of such a case is cable systems on which no speckle patterns

can be applied. This study proposes Directional DIC (D-DIC) as an alternative technique to

overcome the limitations posed by the aperture problem in conventional DIC methods. Direc-

tional DIC assumes the local direction of motion, which is often a valid assumption in structural

vibration tests, as individual vibration shapes are often unidirectional at localized parts of the

structure. This alleviates some restrictions on trackable image subsets, enabling more trackable

locations. A parameter for quantifying expected tracking performance for D-DIC is introduced.

The parameter enables automatic feature selection for D-DIC, making optical methods more

accessible for displacement identification on structures where no speckle patterns can be applied.

Experimental modal tests are conducted using a flexible spider web-like structure to validate

the D-DIC method and compare it to conventional DIC. The experimental findings show that

the Directional DIC method allows for measuring displacements at significantly more locations

than conventional DIC. Additionally, D-DIC provided less noisy frequency response functions,

more retrieved stable poles, and more fitted vibrational modes. Lastly, the findings show that

D-DIC is especially superior to DIC when using small subsets since D-DIC is less inhibited by

the aperture problem.
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1. Introduction
Measuring vibrations of engineering structures and mechanical systems is fundamental to conducting structural

diagnostics, prognostics, reliability analysis, and service-life management [1–3]. However, installing physical sensors

can be costly, complex, or intrusive for large or highly deformable structures. Non-contact displacement measurements

based on computer vision offer significant advantages over contact sensors, which include full-field displacement

and eliminating the added mass of physical sensors that often alter the dynamic characteristics of the structure [4, 5].

Non-contact displacement measurements are advantageous for testing and evaluating flexible structures, such as aircraft

wings, wind turbines, suspension bridges, cables, and soft robots. Several image alignment techniques have been

introduced to provide not only the dynamic responses of a structure but also the deformation or modal shapes from

extracted video motions. One of the most widely used image alignment techniques is the Lucas-Kanade optical flow

algorithm [6, 7]. Peters et al. [8] introduced the method into engineering as Digital Image Correlation (DIC). DIC

has been widely used in experimental mechanics since it was first applied in the field of structural dynamics in 1983
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[9, 10]. Current implementations of the Lucas-Kanade method in DIC have improved accuracy by including root-finding

techniques to minimize residuals and can warp images for better alignment [7, 11]. Alternatives to DIC consisted of

methods such as photogrammetry point tracking [12–15], phase-based methods [16–18], and the complex pyramid

method [19]. Since vibration shapes are often required in 3D space Siebert et al. [20] demonstrated the retrieval of

3D full-field displacement responses of a structure using DIC with multiple time-synchronized cameras. Gorjup et

al. [21] used triangulation in the frequency domain to obtain 3D vibration mode shapes using a single camera. An

FEM model was used as an alternative to synchronized cameras for finding the 3D vibration shapes [22]. The utility of

DIC to extract 3D mode shapes is now commonplace in structural vibration [21–27] since computer vision-based can

provide mode-shape magnification in structural vibration [28–30], FEM model updating [31–33], damage precursors

identification [15, 34–36], and estimating moving forces for structural health monitoring [37]. High-speed infrared

cameras were employed to identify the full field strain mode shapes of beams using the thermoelastic relationship and

using individual pixels as sensors [38]. By using an inertial measurement unit (IMU), any 6-DOF motion was corrected

for motion estimation with optical methods [39]. Readers interested in further information about the application of

optical DIC methods in the field of structural vibrations are encouraged to refer to excellent review publications by

Niezrecki et al. [40], and Baqersad et al. [41].

a) b)

c) d)

Fig. 1 The aperture problem. An object moves horizontally (a) and diagonally (b). When observing an edge through a
small hole (an aperture), the horizontal motion (c) and the diagonal motion (d) are indistinguishable. However, when

the aperture observes a corner, unique motions are detected, thus overcoming the aperture problem.

Obtaining reliable displacement measurements with DIC requires an image subset (feature) to have a well-defined

gradient in two orthogonal directions. However, most engineering structures lack surfaces with such well-defined
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gradients. The lack of sufficient gradient in one of the directions in a subset makes it challenging to observe the motion

in that direction correctly. Fig. 1 provides a visual explanation of this well-known phenomenon called the aperture

problem, which causes an ill-conditioned optimization problem in DIC [42–44]. To overcome the aperture problem, it

is common to apply speckle patterns to the test samples to track the material displacement [45].

There are several reasons why speckle patterns in the form of permanent paint or temporary stickers may not always

be suitable for a structure. For example, measuring the displacement of a cable, or a network of cables presents a

challenge, as no speckle pattern can be applied [46]. In such cases, there will only be a large gradient perpendicular

to the cable, between the cable and the background. Other reasons range from undesirable aesthetics and cost of the

speckle application to a civil structure [19] and its influence on the aerodynamic properties of an aerospace structure

[47]. Nonetheless, the main advantage of non-contact methods, such as optical methods, is that the mass of the sensor

will not alter the vibration characteristics of the structure [48]. For the same reasons, applying paint or stickers to

very lightweight and flexible structures is undesirable. These examples highlight the need for a displacement tracking

method with less restrictive requirements for trackable image subsets. Quantifying the expected tracking performance

of these subsets is crucial for enabling the identification of naturally occurring features. Automatic feature detection

algorithms can be utilized to localize pixel subsets in an image that can adequately track the displacement. One of the

earliest automatic feature detection algorithms was based on the image gradients in four directions [49]. Tomasi et

al. [50, 51] introduced an influential approach that computed the eigenvalues of a pixel subset to score its expected

performance, taking both sensitivity and stability into account. Feature detection algorithms continued to evolve and

offered faster computations and enhanced robustness against edge-like features [52, 53], or reduced the effects of 1D

edges [54]. Generally, selection algorithms choose features in descending order of score and minimum distance between

them [50, 51], select features where scores have local maxima [49, 52], or use Adaptive Non-Maximal Suppression

(ANMS) to ensure features are more evenly distributed across an image [53].

Javh et al. [55] introduced the Simplified Optical Flow method (SOF) as an alternative to the Lucas-Kanade optical

flow algorithm to measure displacement for structural vibration. The SOF method overcame the aperture problem by

taking advantage of the fact that the pixel intensity gradient is constant and uni-directional for low (sub-pixel) amplitudes.

Patterns on measured structures were designed such that the motion was in the direction of the pixel intensity gradient,

enabling individual pixels (or small subsets of pixels) to be utilized as one-degree-of-motion displacement sensors.

The method significantly sped up the measurements and demonstrated a high displacement resolution of 0.0008 pixels.

However, SOF is limited to low (sub-pixel) amplitudes, thus restricting its effectiveness. Additionally, SOF does not

include a root-finding algorithm to refine the extracted motion, unlike Lucas-Kanade, which incorporates a root-finding

capability for this purpose [56, 57].

To overcome the limitations of the DIC and SOF methods stated above, this study proposes the Directional DIC

(D-DIC) as an alternative method that retrieves motion via a user-defined direction. The proposed D-DIC method
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can leverage root-finding methods, ensuring accurate high-displacement measurements. A priori motion direction

produces fewer restrictions on selecting tracking locations by minimizing the aperture problem. As the new method has

different restrictions on trackable regions, a new parameter, 𝜆d, is introduced to quantify expected tracking performance,

thus enabling automatic feature selection for D-DIC. The D-DIC method is publicly available through the OpenSource

Python package pyIDI [58].

This article is organized as follows. First, a theoretical background is given on DIC and automatic feature selection

in Sec. 2. The D-DIC method and parameter 𝜆d are detailed in Sec. 3. The experimental approach and validation of the

D-DIC method are provided in Sec. 4. The section also provides a detailed comparison between the Directional and

conventional DIC methods. The major findings of this study are summarized in the conclusion section.

2. Theoretical Background
This section details the mathematical implementation of DIC for measuring displacements from a sequence of

images and corresponding automatic feature selection algorithms.

2.1. Digital Image Correlation

A grayscale camera measures the light intensity field 𝐼 (𝑥, 𝑦) [55]. A grayscale image is represented by a 2D array of

pixels, where the value of each pixel represents the amount of light; i.e. light intensity. Therefore, each image contains

discrete values of the light intensity field that can be utilized to track the motion. The goal of DIC is to align a template

image 𝑇 (𝑥, 𝑦) with an input image 𝐼 (𝑥, 𝑦) [6]:

min
𝛿𝑥, 𝛿𝑦

∑︁
𝑝

[𝑇 (𝑥, 𝑦) − 𝐼 (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦)]2 , (1)

where 𝑝 is the pixels in a subset of pixels in an image, typically 𝑞 × 𝑞 pixels and 𝛿𝑥 and 𝛿𝑦 represent the incremental

displacements. Each subset of pixels is referred to as a feature. DIC uses multiple pixels as opposed to a single one to

avoid potential ambiguity with respect to the global motion direction, which is related to the aperture problem illustrated

in Fig. 1 [59]. The resolution potential of the extracted motion is expected to increase linearly with respect to size 𝑞 [55].

Residual errors may occur when solving the optimal incremental displacement in Eq. (1). To minimize the residuals, a

new image is created by translating one of the images by 𝛿𝑥 and 𝛿𝑦, after which Eq. (1) is reevaluated. The optimal

global displacements (Δ𝑥 and Δ𝑦) are found by updating after each increment:

Δ𝑥 ← Δ𝑥 + 𝛿𝑥, and

Δ𝑦 ← Δ𝑦 + 𝛿𝑦.
(2)

DIC retrieves incremental displacements and updates the global displacements until the displacement converges,
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(a) Template image 𝑇 is shifted with the incremental
displacements 𝛿𝑥 and 𝛿𝑦, and input image 𝐼 is shifted with

integer displacements ⌊Δ𝑥⌉ and ⌊Δ𝑦⌉, to align a feature that has
a high gradient in two orthogonal directions (a cross).

(b) Template image 𝑇 is shifted with incremental displacement
𝛿𝜆 in direction d, and image 𝐼 is shifted with integer

displacements ⌊Δ𝑥⌉ and ⌊Δ𝑦⌉, to align a feature that has a high
gradient in direction d (an edge).

Fig. 2 A schematic depiction of a) conventional DIC, and b) Directional DIC. Both set up with 𝑞 = 3.

typically by checking if the norm of the incremental displacements is below a threshold 𝜖 , i.e. ∥𝛿x∥ ≤ 𝜖 . As images are

represented as 2D discrete grids located at integer coordinates, an interpolation function of one of the images needs

to be generated to translate one of the images. A cubic interpolation function is used, which ensures the continuity

and smoothness of the intensity field with high accuracy and convergence rate [56, 60]. While Eq. (1) includes only

translations, the method is often extended to include more involved transformations, for example, affine warp [61].

Previous work has shown that for small displacement (sub-pixel), as is often the case in structural vibration, extracting

only translations can significantly decrease the computation time and noise in results [32]. DIC can be implemented in

various ways; for a comparison of different methods and a detailed derivation of the method, refer to, for example, Baker

et al. [7]. In the implementation of this work, an interpolation function is set up only once for the template image rather

than for each frame in the video. Firstly, this is advantageous as it enables precomputing the interpolation function

[62]. Secondly, as the template image can be denoised, a higher-quality interpolation function can be created leading to

better results [7]. Denoising the template image is achieved by averaging a set of frames in the time domain instead of

using, for example, the first frame in the video [63]. In the case of small amplitude (sub-pixel) harmonic vibrations,

𝑇 can be acquired by averaging all frames since harmonic displacement does not, mathematically, affect the average

pixel intensity level [55]. For high amplitude vibrations (multi-pixel), 𝑇 can still be averaged but only on frames before

applying an excitation [63]. The DIC implementation is modified to ensure that only the template image needs to be
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interpolated. The global displacements are split into the nearest pixel integer (the pixel shift, ⌊Δ𝑥⌉ and ⌊Δ𝑦⌉) and its

corresponding residuals Δ𝑥 and Δ𝑦:

Δ𝑥 = ⌊Δ𝑥⌉ + {Δ𝑥}, and

Δ𝑦 = ⌊Δ𝑦⌉ + {Δ𝑦}.
(3)

This specific split ensures that an image shifted with ⌊Δ𝑥⌉ and ⌊Δ𝑦⌉ is directly accessible from memory. The goal

function, i.e. Eq. (1), is then modified into:

min
𝛿𝑥, 𝛿𝑦

∑︁
𝑝

[
𝑇{} (𝑥 − 𝛿𝑥, 𝑦 − 𝛿𝑦) − 𝐼⌊ ⌉ (𝑥, 𝑦)

]2 . (4)

where 𝑇{} is the interpolated template image, and 𝐼⌊ ⌉ the pixel shifted input image, or:

𝑇{} (𝑥, 𝑦) = 𝑇 (𝑥 − {Δ𝑥}, 𝑦 − {Δ𝑦}), and (5)

𝐼⌊ ⌉ (𝑥, 𝑦) = 𝐼 (𝑥 + ⌊Δ𝑥⌉, 𝑦 + ⌊Δ𝑦⌉). (6)

The residual displacements are updated according to:

{Δ𝑥} ← {Δ𝑥} + 𝛿𝑥, and

{Δ𝑦} ← {Δ𝑦} + 𝛿𝑦.
(7)

After convergence, the optimal global displacements are found via Eq. (3). The DIC implementation is depicted in

Fig. 2a.

The optimal incremental displacements in Eq. (4) are obtained by taking the first-order Taylor expansion of 𝑇{} with

respect to 𝑥 and 𝑦 and setting the resulting equation to zero. The spatial derivatives of 𝑇{} are switched with those of 𝐼⌊ ⌉

following the Hager-Belhumeur implementation [62]. This is a justified replacement as 𝑇{} ≈ 𝐼⌊ ⌉ , provided that the

initial approximations of the global displacements are close to the truth. The replacement provides a computational

advantage as 𝜕𝐼
𝜕x remains constant in each iteration and thus only needs to be computed once per frame. The incremental

displacements are then retrieved as follows:


𝛿𝑥

𝛿𝑦

 = 𝐻−1
∑︁
𝑝


𝜕𝐼
𝜕𝑥

𝜕𝐼
𝜕𝑦


(
𝐼⌊ ⌉ − 𝑇{}

)
, (8)
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where 𝐻 is the (Gauss-Newton approximation to the) Hessian matrix:

𝐻 =
∑︁
𝑝


(
𝜕𝐼
𝜕𝑥

)2
𝜕𝐼
𝜕𝑥

𝜕𝐼
𝜕𝑦

𝜕𝐼
𝜕𝑥

𝜕𝐼
𝜕𝑦

(
𝜕𝐼
𝜕𝑦

)2

 . (9)

2.2. Automatic feature selection

An automatic feature selection algorithm first quantifies all potential tracking locations in 𝑇 based on its expected

tracking performance to create a score image 𝑆. Subsequently, an algorithm selects features from the score image, for

example, with one of the algorithms discussed later in this section(Fig. 3). Good features to track have high gradients in

a) b) c)

𝑇 𝑆 features

Fig. 3 Automatic feature selection in a spiderweb-like cable network. a) A template image 𝑇 is established. b) 𝑇 is
filtered, for example, with 𝜆0 to create the score image 𝑆. c) Features are selected automatically from 𝑆 with an

algorithm, for example, in descending order of score, at local maxima, or with ANMS.

two orthogonal directions to overcome the aperture problem, as seen in Fig. 1. This observation can be formalized by

inspecting Eq. (8). A smaller displacement can be measured for the same amount of difference between 𝐼⌊ ⌉ and 𝑇{} if 𝐻

is big, i.e. the sensitivity of Eq. (8) increases as 𝐻 increases. Additionally, Eq. (8) will be stable if 𝐻 is easily invertible,

i.e. 𝐻 is well-conditioned. The symmetric matrix 𝐻 is well conditioned if |𝜆1 | /|𝜆0 | ≈ 1, with 𝜆0 and 𝜆1 being the

smaller and the larger eigenvalue of 𝐻, respectively. In practice, 𝐻 will be well-conditioned if the smaller eigenvalue is

large. This comes from the fact that the pixel intensity gradients will be bounded by the minimum and maximum pixel

intensity value, such that the greater eigenvalue cannot be arbitrarily large [50]. This led Tomasi et al. to introduce the

smallest eigenvalue to score the tracking performance [50].

𝜆0 = min(eigvals(𝐻)) (10)

The score image 𝑆 is then created by applying Eq. (10) as a filter across the template image. The kernel size of

the filter matches the subset size 𝑞 used in DIC. Next, an algorithm selects locations based on 𝑆. This theoretical

background provides three possible algorithms for automatic feature selection. In Algorithm 1, tracking locations are

sorted based on scores in 𝑆, and features are picked in descending order of score [50, 51]. This algorithm excludes

features that overlap with windows of size 𝑤 centered at previously selected features. The size of the subsets, 𝑞, does
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not have to match that of the windows, 𝑤, used for excluding feature locations. This allows for control over how

spread-out features will be selected across the structure. In algorithm 2, local maxima in a window of size 𝑤 are

retrieved from 𝑆. The highest 𝑛 local maxima are set as features [49, 52]. Tuning 𝑤 provides control over the spread

out 𝑛 features across a structure. Algorithm 3 applies the Adaptive Non-Maximal Suppression (ANMS) algorithm to

select features that are evenly spread out across an image [53]. This can be useful in experimental modal analysis,

for example, when structures are unevenly illuminated or patterned across the structure. ANMS starts with a list

of local maxima in the score image retrieved with, for example, the local maxima algorithm with 𝑤 = 3. Next, the

radius for which the potential feature location is a local maximum is retrieved. The maxima are then ordered in

descending order of radius, and the largest 𝑛 radii are added as features. The algorithm robustness is improved by

using a robustifying factor 𝑐 to retrieve the radius 𝑅 where the maximum is significantly higher than its neighbors.
Algorithm 1: Select by descending score excluding overlapping windows, based on [50, 51]

Input: Score image 𝑆, window size 𝑤, number of features 𝑛

Output: 𝑓 : a List of 𝑛 feature locations

1 w = w // 2;

2 Sort the pixel locations in 𝑆 in descending order of score;

3 initialize an empty list 𝑓 ;

4 for pixel location (𝑥, 𝑦) in the ordered list do

5 if any pixel locations (𝑥 − 𝑤 − 1 : 𝑥 + 𝑤, 𝑦 − 𝑤 − 1 : 𝑦 + 𝑤) is in 𝑓 then

6 Continue to the next pixel location;

7 end

8 Add the pixel locations (𝑥, 𝑦) to 𝑓 ;

9 if The number of features in 𝑓 equals 𝑛 then

10 Exit the loop;

11 end

12 end

Algorithm 2: Select at local maxima, based on [49, 52]
Input: Score image 𝑆, window size 𝑤, number of features 𝑛

Output: 𝑓 : a list of 𝑛 feature locations

1 Apply a maximum filter of size 𝑤 to the score image 𝑆 to obtain 𝑆f, the filtered score image;

2 Identify local maxima in 𝑆 by finding locations where 𝑆f (𝑥, 𝑦) = 𝑆(𝑥, 𝑦);

3 Sort the local maxima in descending order based on their scores in 𝑆;

4 Select the first 𝑛 locations from the sorted list as the feature locations 𝑓 ;
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Algorithm 3: ANMS algorithm, based on [53]
Input: List of potential feature locations 𝑓 0, score image 𝑆, number of features 𝑛, robustifying factor 𝑐

Output: 𝑓 : List of 𝑛 feature locations

1 Sort the potential feature locations 𝑓 0 in descending order based on their scores in 𝑆;

2 Initialize an array 𝑅 with∞ for each 𝑓 0
𝑖

in 𝑓 0;

3 for each potential feature location 𝑓 0
𝑖

in 𝑓 0 do

4 for each potential feature location 𝑓 0
𝑗

in 𝑓 0
1:𝑖−1 do

5 if 𝑐 · 𝑆( 𝑓 0
𝑗
) > 𝑆( 𝑓 0

𝑖
) then

6 Compute the distance 𝑟 = ∥ 𝑓 0
𝑖
− 𝑓 0

𝑗
∥2;

7 if 𝑟 < 𝑅𝑖 then

8 𝑅𝑖 = 𝑟;

9 end

10 end

11 end

12 end

13 Select the locations in 𝑓 0 corresponding to the largest 𝑛 values in 𝑅 as 𝑓 ;

3. Directional DIC with automatic feature selection
Sec. 3.1 details the mathematical development of the D-DIC method. The fundamental innovation in Sec. 3.2 is the

introduction of parameter 𝜆d for facilitating accurate and efficient automatic feature selection. In Sec. 3.3, the effects

of a discrepancy between the pre-defined motion direction and the real motion direction are discussed. Finally, the

relationship between the subset size of a feature and the accuracy of the method is provided in Sec. 3.4.

3.1. Directional DIC

The D-DIC method assumes the motion to be in a single direction d = [𝑒𝑥 , 𝑒𝑦]𝑇 , with |d| = 1. Let 𝛿𝜆 be the

incremental displacements in d. Thus, simple coordinate transformations can be achieved, such that 𝛿𝑥 = 𝛿𝑒𝑥𝜆, and

equivalent in 𝑦-direction. The DIC method is modified accordingly, and depicted in Fig. 2b. The algorithm is modified

accordingly by, first, applying the coordinate transformation to the goal function (4), such that:

min
𝛿𝜆

∑︁
𝑝

[
𝑇{} (𝑥 − 𝛿𝑒𝑥𝜆, 𝑦 − 𝛿𝑒𝑦𝜆) − 𝐼⌊ ⌉ (𝑥, 𝑦)

]2 . (11)
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The residual displacements {Δ𝑥} and {Δ𝑦} after applying the coordinate transformation are updated according to (see

Eq. (7) for comparison):

{Δ𝑥} ← {Δ𝑥} + 𝛿𝑒𝑥𝜆, and

{Δ𝑦} ← {Δ𝑦} + 𝛿𝑒𝑦𝜆.
(12)

To solve the incremental displacement 𝛿𝜆, the nonlinear goal function, in Eq. (11), is linearized by performing a first

order Taylor expansion on 𝑇{} with respect to 𝜆:

min
𝛿𝜆

∑︁
𝑝

[
𝑇{} +

𝜕𝑇{}
𝜕𝜆

𝛿𝜆 − 𝐼⌊ ⌉

]2
. (13)

The spatial derivative with respect to 𝜆 is obtained efficiently from the spatial gradients with respect to 𝑥 and 𝑦 using the

coordinate transformation (Eq. (14)). Similar to conventional DIC in Sec. 2.1, the implementation of D-DIC switches

the spatial derivatives of 𝑇{} and 𝐼⌊ ⌉ , to improve computational efficiency, as follows:

𝜕𝑇{}
𝜕𝜆
≈

𝜕𝐼⌊ ⌉
𝜕𝜆

= 𝑒𝑥
𝜕𝐼⌊ ⌉
𝜕𝑥
+ 𝑒𝑦

𝜕𝐼⌊ ⌉
𝜕𝑦

. (14)

The derivative with respect to 𝜆 is retrieved, and the equation is set to zero. Accordingly, 𝛿𝜆 becomes:

𝛿𝜆 =
1∑

𝑝

(
𝜕𝐼⌊⌉
𝜕𝜆

)2

∑︁
𝑝

𝜕𝐼⌊ ⌉
𝜕𝜆
(𝐼⌊ ⌉ − 𝑇{}). (15)

In short, the D-DIC algorithm loops the following steps until convergence is reached, |𝛿𝜆 | ≤ 𝜖 :

• interpolate 𝑇{} with the residual displacements using Eq. (5);

• retrieve the incremental displacement 𝛿𝜆 via Eq. (15); and

• update the residual displacements via Eq. (12).

Finally, the global displacements are found after accounting for the integer pixel shift using Eq. (3).

3.2. Automatic feature selection for Directional DIC

In conventional DIC, a feature requires a high pixel intensity gradient in two orthogonal directions to overcome the

aperture problem and ensure high sensitivity, as established in Sec. 2.2. Since Directional DIC uses a predetermined

motion direction, it experiences a reduced influence from the aperture problem. Consequently, the requirements for a

feature will be different. The displacement in direction d is observable when the gradient is high. This can be formalized

by inspecting Eq. (15). As the gradient in d increases, smaller displacement can be observed for the same amount of

difference between 𝐼⌊ ⌉ and 𝑇{}), i.e. the sensitivity of D-DIC increases as 𝐼⌊⌉
𝜕𝜆

increases. This observation is captured

in parameter 𝜆d, which sums the intensity gradient in d for a subset of pixels in a feature. Taking the absolute value
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ensures that the parameter highlights gradients in both positive and negative directions.

𝜆d =
∑︁
𝑝

����𝑒𝑥 𝜕𝑇𝜕𝑥 + 𝑒𝑦 𝜕𝑇𝜕𝑦 ���� (16)

As 𝜆d is less strict than 𝜆0 in general more features can be selected on the same structure, especially for non-ideal

surface patterns. Parameter 𝜆d is a similar feature to the Sum of Square of Subset Intensity Gradients (SSSIG) proposed

by Pan et al. [64]. In contrast to SSSIG, 𝜆d will only highlight features with intensity gradients in the appropriate

direction. When all tracking locations are quantified with 𝜆d, features can be selected with, for example, one of the

algorithms described in Sec. 2.2.

3.3. The assumption of single directional displacement

Directional DIC is facilitated by assuming a constant pre-determined displacement direction d. In practical cases,

one must consider that the actual displacement direction may not be constant, and there may be a discrepancy between

the actual and assumed displacement directions. This raises the question of what the effect of error in the assumed

displacement direction d is on the robustness and the accuracy of the D-DIC method. Consider a case where there is

displacement perpendicular to d, denoted as d⊥. When the tracked feature has no gradient in d⊥ (a perfect edge along

d⊥), it will not affect the robustness, as the pixel intensity value will remain constant independent of the displacement in

d⊥. However, if there is a gradient in d⊥, the correlation between 𝐼⌊ ⌉ and 𝑇{} will decrease as the displacement in d⊥

increases, meaning that the expected robustness of D-DIC will decrease. In general, the expected robustness of D-DIC

increases as the gradient in d⊥ within a feature decreases.

We can analyze the effects of displacement in d⊥ on the accuracy of D-DIC using trigonometry. Consider the

sub-pixel displacement of an individual pixel in a feature, shown in Fig. 4; where 𝛼 is the offset angle between the

predefined motion direction d and the actual motion direction d∗; and 𝛽 is the angle between the gradient direction of the

pixel of interest (∇I) and d. The direction of ∇I is assumed to be constant for a sub-pixel displacement and is crucial as

the optimal displacement of the pixel is perpendicular to it. The percentage error relative to the real displacement (AC)

as a function of angles 𝛼 and 𝛽 is calculated between the real displacement in d (AD) and the measured displacement

(AB), and it is represented by:

error =
AD − AB

AC
· 100% =

(
cos (𝛼) − cos (𝛼 + 𝛽)

(cos 𝛽)

)
· 100%. (17)

Eq. (17) is plotted for several cases of 𝛽 in Fig. 5. This analysis pertains to an individual pixel. Since the relationship in

Eq. (17) is nonlinear, each pixel in a feature must be evaluated individually to determine the overall accuracy of the

entire feature. Eq. (17) shows that the error is zero as long as 𝛽 is exactly zero. However, in all other cases, the error
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𝛼
𝛽

A B

C

D∇ Id

d∗
d⊥

Fig. 4 Schematic of the displacement of an individual pixel in a feature during D-DIC, located at A moving to C. The
vector d is the pre-determined motion direction. The real motion direction is d∗. The offset angle between d and d∗ is 𝛼.
The gradient of the pixel of interest is ∇I. 𝛽 is the angle between d and the direction of ∇I. AC: The real displacement

of the pixel, AB: the measured displacement with D-DIC, and AD: the real displacement in d.

Fig. 5 The mathematical error of a single pixel in a feature as a function of the offset angle 𝛼 between d and d∗, for
several cases of 𝛽, 𝛽 is the angle between the pre-determined motion direction and the direction of the pixel intensity

gradient of the pixel.
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increases as the offset error increases. Notably, the error can be especially significant when the pixel intensity gradient

is poorly aligned with d. Using such subsets is discouraged for cases where 𝛼 is expected to be high during a test. When

tracking features that do not look like straight edges, it is expected that the accuracy of the feature will be a mixture of

low- and high-error pixels, some of which will cancel each other. In these cases, conventional DIC can also be used to

identify displacement, as there will be a gradient in two orthogonal directions. Generally, the accuracy of a feature will

increase when its pixel intensity gradient is aligned with d.

3.4. Relationship Robustness and subset size

While conventional DIC suffers from the aperture problem (the 2D motion is under-defined when using individual

pixels), the D-DIC method has a pre-determined local motion direction. The aperture problem is, therefore, expected

to play a less significant role, which should cause the proposed method to require smaller subsets to converge than

conventional DIC. The theoretical resolution potential is related to the subset size (𝑞 × 𝑞) and the bit depth of the camera

𝑛 according to [55]:

Δ𝑥min =
1

(2𝑛 − 1)𝑞 . (18)

The implication is that the resolution can be increased by choosing a larger subset. When retrieving motion of

non-overlapping subsets, smaller subsets can be more advantageous, as more features can be selected. The change in

pixel intensity is proportional to the displacement, meaning that the camera noise maps to the displacement noise. By

using more features, the displacement noise can be averaged out. Using the same pixel multiple times in an overlapping

feature will not average out the noise, as the pixel will have the same inherent error anytime it is evaluated.

4. Experimental Research
To validate the proposed D-DIC method, a modal analysis was conducted on a structure that does not have a high

pixel-intensity gradient in two orthogonal directions across the whole structure. The methodology for gathering modal

results— consisting of frequency response functions and vibration shapes —based on a sequence of images starts with

choosing a feature size (𝑞 × 𝑞) and feature locations. The feature size is typically selected through a parameter study.

Feature locations can be selected either manually or automatically, employing suitable methods for conventional DIC

(𝜆0, see Sec. 2.2) or D-DIC (𝜆d, see Sec. 3.2). To ensure that automatic feature selection exclusively adds features

relevant to the structure of interest, pixels outside this structure can be automatically omitted by excluding pixels outside

a user-defined region of interest. A template image is created from the image sequence. This can either be an individual

image or an average of multiple images. Conventional and D-DIC is then employed to measure the displacements at the

features using a user-defined tolerance 𝜖 . The motion direction 𝑑 for D-DIC, can often be estimated visually. However,

in cases where the motion direction is unclear, the displacement can be tracked at specific locations with DIC that meet
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the required gradient conditions. The direction 𝑑 is then determined by calculating the slope of a linear fit through

the resulting displacement path. Conventional and D-DIC is employed with the OpenSource PyIDI package [58]. In

practice, it is found that not all features measure the displacement correctly. Therefore, three thresholds are proposed to

classify a feature as (un)successful. If one of the following thresholds is met, the feature is classified as unsuccessful:

(1) : The maximum retrieved displacement is greater than 𝑎 pixels.

(2) : The displacement between subsequent frames is bigger than 𝑏 pixels.

(3) : The displacement at the last frame is more than 𝑐 pixels.

(19)

The parameters 𝑎, 𝑏, and 𝑐 are case-by-case dependent ones set by the user. The third threshold is proposed to

identify features drifting along edge-like features in conventional DIC but will only catch features that drift by more

than 𝑐 pixels. As 𝜆0 should score low on edge-like features, a better practice is to exclude these features by setting fewer

features. Finally, modal parameter estimation can be performed, and vibration modes are fitted.

4.1. Spiderweb-like structure

The experimental setup can be described as follows. A spiderweb-like structure was 3D printed using Thermoplastic

polyurethane (TPU) material. The structure was printed from a single layer 0.2mm thick and 0.4 mm wide. The

distance between a connection point and its opposing one was 29 cm. The width and height of the spiral making up

the web were 22 and 26 cm, respectively. The flexible low-mass structure was suspended within a frame, as shown

in Fig. 6. Retrieving the dynamics of such structures with contact method sensors, such as accelerometers and strain

gauges, is discouraged as they will alter the dynamics [65]. Alternative non-contact methods, such as the Laser Doppler

Vibrometer, require repeated testing to retrieve the full field response [65]. Applying a speckle pattern to the thin

structure was found to be inappropriate because the paint was intrusive to the material properties of the TPU, resulting

in a single strand feeling less flexible and damping vibrations more quickly. The spiderweb-like structure was excited

with a modal hammer in the out-of-plane direction, where out-of-plane unidirectional vibration was predominant. In

the test, 8000 frames were acquired at 8,000 frames/second with pixel values on a 12-bit grayscale and 1,024 × 512

pixels per frame. The structure was illuminated using two 50 kLumen LED lights, located at the top and bottom of

the structure, with a light-diffusing panel located at the bottom, as shown in Fig. 6. This lighting approach ensured a

high-intensity gradient between the structure (black) and the background (white).

A parameter study on the subset size revealed that for conventional DIC a subset size of 9 × 9 was optimal. The

same subset sizes were used in conventional DIC as in D-DIC. Features are selected automatically inside of a region of

interest, as depicted in Fig. 7. Features were placed at local maxima, using 𝑤 = 3 (Algorithm 2). Features were added

until the algorithm added features on edge-like features for conventional DIC, or in the background for D-DIC. For both

15



High-Speed Camera

Top lighting

Octagonal frame

Bottom lighting

Fig. 6 Global test set-up. The High-Speed Camera is a Photron Fastcam SA-Z equipped with a Sigma 180 mm F2.8
Macro lens. Top and bottom lighting is achieved using two battery-powered 50 kLumen LED lights.

methods, a denoised template image 𝑇 was generated by averaging the first 150 frames prior to the impact hammer

impacting the web. Conventional or Directional DIC is employed with a tolerance of 𝜖 = 1 · 10−8. The displacement in

the video was visually determined to be predominately vertical, so, D-DIC was evaluated with d = [0, 1]𝑇 . To classify

features as (un)successful, the following parameters were used in the thresholds in Eq. (19): 𝑎 = 6, 𝑏 = 1, and 𝑐 = 2.

Next, modal parameter identification was performed using the Least Square Frequency Domain method [66]. Poles

were extracted between 5 and 300 Hz with polynomials up to order 150. Finally, mode shapes were fitted at stable poles.

For conventional DIC, 1,600 features were added using the algorithm, and 1,553 out of 1,600 were classified as

successful. The algorithm mainly selected features at parts of the structure where strands intersect, such that the feature

had high gradients in two orthogonal directions. For D-DIC, the algorithm was able to add significantly more features;

5,340 out of 5,400 were classified as successful. Many of the features failed to track the motion because the impact

hammer obstructed the field of view at one or more frames in the video. When only including the features outside of the

obstructed view, 1,521 out of 1,545 features were tracked successfully for conventional DIC (success rate of 0.984).

However, 5,292 out of 5,292 features were tracked successfully for D-DIC (success rate of 1.0). The noise floor of
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(a) Conventional DIC: 1,553 out of 1,600 automatically selected features tracked successfully. When excluding features with an
obstructed view, 1,521 out of 1,545 features were tracked successfully (success rate of 0.984).

(b) Directional DIC: 5,340 out of 5,400 automatically selected features tracked successfully. When excluding features with an
obstructed view, 5292 out of 5292 features were tracked successfully (success rate of 1.0).

Fig. 7 The automatically selected features for DIC and D-DIC with a subset size of 9 × 9. Only pixels inside the
region of interest were considered as possible feature locations.

the mean frequency response functions was higher in conventional DIC than in D-DIC, as highlighted in Fig. 8. This

enabled D-DIC to identify more stable poles and vibration shapes than conventional DIC. For clarity, only the poles

between polynomial order 120 and 150 are depicted in Fig. 8. The poles highlighted in green indicate those that were

identified using D-DIC. The vibration shapes of the poles highlighted in blue vertical lines are shown in Fig. 9. As

D-DIC allowed for setting significantly more appropriate features, the vibration shapes were more spatially dense. This

made analyzing the characteristic shapes of the vibration shapes easier, especially those at high frequencies.
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†

Fig. 8 Stability diagrams of the results with a subset size of 9 × 9 Poles are retrieved with the Least Squares Frequency
Domain method, with only the stable poles depicted. Vertical blue annotations indicate the selection of modes depicted

in Fig. 9. † The noise floor difference between DIC and D-DIC.

Fig. 9 Selection of mode shapes of the spiderweb-like structure comparing conventional DIC (DIC) with Directional
DIC (D-DIC) method.
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4.2. Small subsets

In Sec. 2, it was noted that in conventional DIC, subsets of pixels are used to overcome the aperture problem. In this

section, we show why the aperture problem is expected to play a less significant role since D-DIC uses a predetermined

displacement direction. This was validated by retrieving the displacement of the web structure with a 3 × 3 subset size.

Features were added in descending order of expected tracking performance, using 𝑤 = 3 (Algorithm 1). The selected

features shown in Fig. 10 are for the same parameters used in Sec. 4.1; 𝜖 = 1 · 10−8, d = [0, 1]𝑇 , 𝑎 = 6, 𝑏 = 1, and

𝑐 = 2. Modal parameter identification was performed using the Least Square Frequency Domain method between 5

and 300 Hz up to a polynomial order of 150. For conventional DIC, 5,000 features were added, of which 4,846 were

(a) Conventional DIC: 3,050 out of 5,000 features tracked successfully. When excluding features with an obstructed view, 3,040 out
of 4,846 features were tracked successfully (success rate of 0.627).

(b) Directional DIC: 10,076 out of 10,300 features tracked successfully. When excluding features with an obstructed view, 10,014 out
of 10,035 features were tracked successfully (success rate of 0.998).

Fig. 10 The automatically selected features for DIC and D-DIC with a subset size of 3 × 3. Only pixels inside the
region of interest were considered as possible feature locations.
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outside the area with an obstructed view. When attempting to add more features, the algorithm predominantly added

non-trackable edge-like features. Of the added features, 3,040 out of 4,846 characterized the displacement successfully

(success rate of 0.627). For D-DIC, 10,300 features were successfully added, of which 10,035 were outside the area

with an obstructed view. Beyond this point, the algorithm began incorporating features that were predominantly in

the background. Of these features, 10,014 out of 10,035 characterized the displacement successfully (success rate of

0.998). The mean frequency response functions, in Fig. 11, show that the noise floor for D-DIC remained lower than for

conventional DIC. More stable poles were identified, and vibration shapes were fitted using D-DIC. However, fewer

stable poles were identified in comparison with larger subset sizes. This was as expected as the displacement resolution

potential increases with the subset size 𝑞, as illustrated by Eq. (18).

†

Fig. 11 Stability diagrams of the results with a subset size of 3 × 3. Poles are retrieved with the Least Squares
Frequency Domain method, with only the stable poles depicted. † The noise floor difference between DIC and D-DIC.

5. Conclusion
The proposed Directional Digital Image Correlation (D-DIC) was a modification of the widely used DIC method

by limiting the local displacement along a user-defined direction. The findings showed that D-DIC overcame several

limitations in existing displacement estimators. The main limitation of using conventional DIC as a displacement

estimator was that it had a strict requirement for features: a high pixel intensity gradient in two orthogonal directions.

The requirement for a feature to be used with Directional DIC was less strict, as only a high gradient was required in the

local displacement direction. This was validated by conducting a modal analysis for a spider web-like and highly flexible

structure that did not have a well-defined pixel intensity gradient in two orthogonal directions across its full surface.

More than three times as many features were tracked successfully with D-DIC than for conventional DIC for both large

(9 × 9) and small (3 × 3) features. D-DIC was also better at tracking displacement when using smaller features than
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conventional DIC, which was indicative of the robustness of D-DIC against the aperture problem. For small features

(3 × 3), conventional DIC only tracked the displacement with a success rate of 0.627 compared to 0.998 for Directional

DIC. D-DIC enabled setting up a mean frequency response function that was less noisy. Finally, more stable poles and

vibration shapes were retrieved with D-DIC than conventional DIC. Directional DIC was able to overcome SOF’s small

(sub-pixel) amplitude limitation by including a root-finding algorithm, as is conventional in DIC. The experimental

analysis validated its accuracy at high displacement. The study demonstrated how to automatically select appropriate

features for displacement estimation in a structure of interest. A parameter 𝜆d was proposed to be used for an automatic

feature selector for uni-directional image-alignment techniques, such as Directional DIC. 𝜆d summed the pixel intensity

gradient of a feature in the direction of the pre-defined displacement direction and takes the absolute value. Directional

DIC enabled optical methods for cases where a speckle pattern could not be applied, but the motion was predominately

uni-directional.
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