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Abstract. The two major advantages of bispectral analysis are: resistance to noise and the ability to
detect nonlinearities, like quadratic phase coupling. The first aim was to study some of the theoreti-
cal aspects of bispectral estimation. A lot of attention was paid to the influence of noise, the number
of segments, the influence of one or several harmonic deterministic components and aliasing. These
aspects are typical of rotating machinery. An example of successful fault identification in DC electric
motors is presented. The identification proved to be capable to identify quadratically coupled mechan-
ical system when the power-spectra analysis failed. Further it proved to be quite resistant to noise.
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1. Introduction

The second-order spectral analyses provide basic information about a process. How-
ever, higher-order spectral (also known as polyspectra) analyses are able to provide
some new characteristics of the analyzed process. In contrast to second-order spec-
tra (e.g. power spectra), which are obtained relatively easily and can be interpreted
in a straightforward manner, higher-order spectra demand a great deal of effort and
the interpretation of the results is not so clear. In nonlinear systems, however, the
second-order spectra are insufficient, and therefore in this study the bispectra will be
used for the identification of quadratic phase-coupled (QPC) systems [1].

The major advantages of bispectra are as follows: the identification of nonGaussian
processes, the filtering out of Gaussian noise [2], the identification of certain types of
nonlinearity [3], and the testing for aliasing [4].

In mechanical engineering the bispectral analysis has mostly been applied to the
condition monitoring of different machinery. Examples of this type of monitoring
include: stamping operations [5], the diagnosis of the condition of motor bearings [6],
fault identification in rotating machinery [7], condition monitoring in reciprocating
machines [8], wind turbine blades [9], cutting-process identification [10] and diagnosis
of planar dynamics of nonlinear systems [11, 12].

In bispectral analyses the spectral leakage and therefore the choice of window is
very important. The reader is referred to Fackrell’s excellent review of the various
windows [3]. Since the calculation of the bispectrum can be time consuming, and
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because of the statistical properties of bispectra, special attention needs to be paid
to the proper re-sampling of the signal [13–15].

The second section covers some of the basics of higher-order spectral analysis. The
third section presents some of the important properties for the identification of QPC
signals, while the actual identification of the QPC signals is given in the fourth sec-
tion. In the following two sections a numerical and a real experiment are analyzed.
The last section is devoted to conclusions.

2. The Basics of Higher-order Spectral Analysis

2.1. The Application of Moments

For a set of n, real, random, continuous and stationary processes
{x1, x2, . . . xn} the rth (r =k1 +k2 +· · ·+kn) order joint moment is defined by [16]:
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where E[·] is the expectation operator, i =√−1 and �() is the (first) joint character-
istic function, also called the moment generation function (MGF) [3]:

�(ω1,ω2, . . . , ωn)=E[ei (ω1 x1+ω2 x2+···+ωn xn)]. (2)

From (1) it follows that the first coefficient of the Taylor expansion of the MGF
function is the mean value (3), the second is its variance (4), . . .

m1 =E[x1] (3)

m2 =E[x2
1 ] (4)

...

2.2. The Application of Cumulants

Similarly to the role of the first joint characteristic function � for moments is the
role of the second joint characteristic function (also called the cumulant generation
function – CGF), for the cumulants:

�(ω1,ω2, . . . , ωn)
�= ln(�(ω1,ω2, . . . , ωn)). (5)

The Taylor expansion of the second characteristic function defines the joint
cumulants:
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If r =n, then the cumulants are related to the moments [16]:

c1 =Cum[x1]=m1 (7)

c2 =Cum[x1, x1]=m2 −m2
1 (8)

c3 =Cum[x1, x1, x1]=m3 −3m2 m1 +2m3
1 (9)

c4 =Cum[x1, x1, x1, x1]

=m4 −4m3 m1 −3m2
2 +12m2 m2

1 −6m4
1. (10)

For a given, real random process {X(k)}, where k =0,±1,±2, . . . the moments up
to order n are defined by:

Mom[X(k),X(k + τ1), . . . ,X(k + τn−1)]

=E[X(k)X(k + τ1) · · ·X(k + τn−1)]. (11)

If the first-order moment (average) is equal to zero, i.e. m1 = 0, then the second-
and third-order cumulants are defined as:

c2(τ1)=m2(τ1) (12)

c3(τ1, τ2)=m3(τ1, τ2). (13)

The second-order cumulant is used for the calculation of the power spectrum:

Cx
2 (ω)=

+∞
∑

τ=−∞
cx

2(τ ) e−i ω τ , (14)

where:

|ω|�2π
fs

2
. (15)

fs is the sampling frequency.
The Fourier transform of the third-order cumulant defines the bispectrum:

Cx
3 (ω1,ω2)=

+∞
∑

τ1=−∞

+∞
∑

τ2=−∞
cx

3(τ1, τ2) e−i (ω1 τ1+ω2 τ2), (16)

where:

|ω1|�π fs & |ω2|�π fs & |ω1 +ω2|�π fs (17)

The frequency pair (ω1,ω2) is called the bifrequency.
Equation (16) represents the indirect method. On the other hand, the direct

method of the bispectrum is calculated in the frequency domain [2]:

B(ω1,ω2)=X (ω1)X (ω2)X ∗(ω1 +ω1), (18)

where X = F(X) (the Fourier transform) and X ∗ denotes the complex conju-
gate of X .

In general, there are two ways to estimate the bispectrum: by segments averaging
and by frequency averaging [17]. In this study only the first of these will be presented.
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For a real signal X of length N we therefore create K segments, each of length M.
To achieve a better frequency resolution on short signals the segments can overlap.
However, to keep the inter-segment correlation low more than 50% of overlapping is
not advised. The segments-averaged bispectrum estimate is defined as:

B̂(ω1,ω2)= 1
K

K
∑

i=1

B̂i(ω1,ω2). (19)

Hinich [2] demonstrated that for a real signal X that includes noise the bispec-
trum estimate B̂ is asymptotically unbiased, and that the variance is proportional to
the power spectra, as noted:

Var B̂(ω1,ω2)∝M C2(ω1)C2(ω2)C2(ω1 +ω2). (20)

If the segment is longer, then the frequency resolution of the Fourier transform is
better. The variance, however, rises (20). Therefore, a balance between the number
of segments and the length of the segment is needed. Often these numbers are equal
[15]: K =M.

Next, from equation (20) it follows that if the power spectra of the signal X is
high at frequencies ω1, ω2 and ω1 + ω2, the variance will also be high. As later we
will be interested in such signals, this poses a problem that can be reduced in sev-
eral ways: one way is to add noise to the signal before calculating the bispectrum;
the other, which is more often used and also more convenient, is to normalize the
bispectrum:

b̂(ω1,ω2)=
1
K

∑K
i=1 B̂i(ω1,ω2)

√

1
K

∑K
i=1 |X̂i(ω1) X̂i(ω2)|2 |X̂i(ω1 +ω2)|2

. (21)

b̂(ω1,ω2) is the complex bicoherence: 0� |b̂|�1. Later we will refer to biphase which
is the argument of the complex bicoherence: ∠b̂=arg b̂.
There are different definitions and also different notations for the bicoherence. In this
study only the complex bicoherence (21) will be used. For an overview of the differ-
ent notations see [3].

3. Bispectrum and Signal Analysis

In this section we look at what can be obtained from cumulants. Only the most use-
ful properties of the moments and cumulants will be discussed, for a complete over-
view the reader should refer to [3, 4, 16, 17].

3.1. Cumulants of the Sum of Independent Processes

In the case of independent real, random and stationary processes {x1, x2, . . . , xn} and
{y1, y2, . . . , yn} the cumulant of the sum equals the sum of the cumulants:

Cum[x1 +y1, x2 +y2, · · · , xn +yn]=Cum[x1, . . . , xn]+Cum[y1, . . . , yn] (22)
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3.2. Cumulants of a Gaussian Process

The probability distribution function (PDF) f (x) of a Gaussian process is:

fG(x)= 1√
2π σ 2

e
− x2

2σ2 . (23)

From equations (1) and (2) the first characteristic function is derived as:

�G(ω)=
∫ +∞

−∞
ei ω x fG(x)dx = e− σ2 ω2

2 , (24)

and the second characteristic function for the Gaussian process is:

�G(ω)= ln(�G)=−σ 2 ω2

2
. (25)

From the first and the second characteristic function of the Gaussian process and
equations (1) and (6) it follows that all the cumulants, except for the cumulant c2, are
equal to 0. However, this does not hold for the moments. The moments and cumu-
lants of a Gaussian process up to the order 4 are given in Table 1.

It follows that the bispectrum (16) of a Gaussian process is equal to zero at all fre-
quencies. Theoretically, the bispectrum is equal to zero at all frequencies for all pro-
cesses with a symmetrical probability distribution [3].

3.3. Cumulants of a Harmonic Process

The probability distribution function of a harmonic process x(t)=A cos(ω t) (where
t is assumed to be random variable; while it is actually not) is [18]:

fH(x)= 1

π
√

A2 −x2
. (26)

The first characteristic function is:

�H(ω)=
∫ +A

−A

ei ω x fH(x)dx =J0(Aω), (27)

where J0(Aω) is a Bessel function of the first kind. The second characteristic
function is:

Table 1. First four moments and cumulants of Gaussian and harmonic processes

Gaussian Harmonic

r-order mr cr mr cr

1 0 0 0 0
2 σ 2 σ 2 1

2 A2 1
2 A2

3 0 0 0 0
4 3σ 4 0 3

8 A4 − 3
8 A4
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�H(ω)= ln(�H)= ln(J0(Aω)). (28)

The moments and cumulants of a harmonic process up to the order 4 are given in
Table 1.

Because the harmonic process is deterministic the moments and cumulants are
actually phase dependant (τ1), e.g.: c2(τ1)= 1

2A2 cos ϕ̇ τ1.
Equation (29) shows that c3(τ1, τ2) is equal to zero for every choice of parameters

τ1, τ2.
∫ +T/2

−T/2
x(t) x(t + τ1) x(t + τ1)

1
T

dt =0, T =
( ω

2π

)−1
. (29)

Because c3(τ1, τ2) of a harmonic process is zero it follows that the bispectrum can-
not detect it (because is zero). While we are not interested in harmonic but coupled
signals we will use this property to our advance.

4. Identification of Quadratic Phase Coupling

At first the quadratic phase coupling (QPC) needs to be defined.
We start with a harmonic signal of the form:

y(t)= cos(ω1t +ϕ1)+ cos(ω2t +ϕ2), (30)

which passes through a nonlinear filter of the form () + ()2, then on the output a
multi-harmonic signal of several amplitudes and frequencies is obtained. These val-
ues are given in Table 2. The phase coupling arises from the quadratic nonlinearity,
and therefore for such a process the term quadratic phase coupling is used.

While the bispectrum (19) returns a complex number as a multiple of the Fourier
transform at frequencies ω1, ω2 and −(ω1 +ω2), the phase (also called the biphase)
of the bispectrum of the QPC signal is theoretically zero. See also the arrow-marks
in Table 2. From now on the focus will be on the normalized bispectrum estimate:
the bicoherence estimate (21).

The identification of the QPC at each bifrequency is made in two steps: first, test-
ing for a significant bicoherence magnitude; and second, testing for a zero biphase.

Table 2. Output of a nonlinear filter of the harmonic signal given by equation (30)

Amplitude Frequency Phase

cos(ω1t +ϕ1) 1 ω1 ϕ1 ⇐
+ cos(ω2t +ϕ2) 1 ω2 ϕ2 ⇐
+ 1 1 0 0
+ 1

2 cos(2ω1t +2ϕ1)
1
2 2ω1 2ϕ1

+ cos((ω1 +ω2)t + (ϕ1 +ϕ2)) 1 ω1 +ω2 ϕ1 +ϕ2 ⇐
+ cos((ω1 −ω2)t + (ϕ1 −ϕ2)) 1 ω1 −ω2 ϕ1 −ϕ2

+ 1
2 cos(2ω2t +2ϕ2)

1
2 2ω2 2ϕ2
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For the test of significant bicoherence the following hypotheses are made:

– H0: the bicoherence at this bifrequency is zero (there is just Gaussian noise),
– H1: the bicoherence at this bifrequency is not zero (there is more than just Gauss-

ian noise).

If the hypothesis H0 is refused, then there might be a QPC and the procedure con-
tinues with the following hypotheses:

– H0: the biphase at this bifrequency is zero,
– H1: the biphase at this bifrequency is not zero.

If the H0 is accepted, then a QPC is present.
Haubrich [19] stated that the distribution of a skewness function for a Gaussian

process is approximately χ2 with 2 degrees of freedom. Fackrell [3] showed that from
this property for a given significance level α, the highest/critical bicoherence level for
accepting the zero hypothesis for bicoherence is:

b2
crit =−2 ln(1−α)

dof
, (31)

where dof is the degree of freedom defined as: dof =2 K, where K is the number of
segments.

The distribution of the biphase is approximately normal [14], and the highest/
critical biphase for accepting the zero hypothesis for the biphase at the significance
level αp is [3]:

∠bcrit = αp√
dof

√

1

b̂2
−1, (32)

5. Numerical Examples

As the output of the bicoherence is highly dependent on the appropriate set of
parameters.

In this numerical example the focus is given to the appropriate number of seg-
ments (parameter K) and the segment length (parameter M). Both parameters have
to follow some rules.

As real signals allways include noise, there the influence of Gaussian noise added
to the signal is studied.

5.1. The Usefulness of Noise and the Importance of the Number of Segments

A synthetic signal of one QPC component was created, see Figure 1. The synthetic
signal was re-sampled to K = 256,M = 256 (19), and the overlapping was 50%. The
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Figure 1. Power spectrum of the synthetic signal (without noise). (a) 0.1249 Hz, (b) 0.2423 Hz,
(c) QPC component.

bicoherence squared b2 and the phase significance were α =αp = 0.99, see equations
(31) and (32). The bicoherence estimate of the synthetic signal with added noise of
20 dB (33) is shown in Figure 2. As can be seen the identification of the QPC com-
ponent is successful. The triangles in the Figure 2 denote the principal domain of the
bispectrum; the inter triangle is defined by equation (17) and is of primary interest
in this study, for details see i.e. [3].

The noise was described by the signal-to-noise ratio (SNR) in dB:

SNR=10 log10

(
var(signal)
var(noise)

)

. (33)

In this study Gaussian noise is used.
However, the identification of QPC on a noiseless signal fails, see Figure 3. When

testing synthetic signals for QPC we have to add noise. On real signals this, however,
is not usually necessary because the noise is already present. In bispectral analysis
noise up to about 20 dB can enhance the identification.

The identification also fails if the number of segments K is small, see Figure 4. It
is advisable to use K =M [15].
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Figure 2. Bicoherence of synthetic signal with SNR = 20 dB.
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Figure 3. Bicoherence of synthetic signal without noise.

0.039
0.14

0.24

0.039
0.14

0.24

0
0.25
0.5

0.75
1

0.14 0.24

0.14

0.24

0.039 0.14 0.24

0.039

0.14

0.24

f1 [Hz]

f 2 
[H

z]

f2 [Hz]

f1 [Hz]

b̂2

Figure 4. Bicoherence calculated on K =16 segments. SNR = 20 dB.

5.2. Harmonic Signals

A synthetic signal of 20 harmonic components was created:

y(t)=
20

∑

i=1

Ai cos(2π fi +φi). (34)

Details are given in Table 3, see also Figure 5. From Table 3 it is clear that there are
two QPC components: the 3rd and the 6th, where the amplitudes of the latter are
very different. Next, the signal also includes a component where only frequencies
are coupled and a component where only phases are coupled.

0 0.082 0.16 0.25 0.33 0.41 0.49

-120

-100

-80

-60

-40

-20

0
0 0.082 0.16 0.25 0.33 0.41 0.49

f [Hz]

Po
w

er
 s

pe
ct

ru
m

 [
dB

]

Figure 5. Power spectrum of the synthetic signal.
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Table 3. Parameters of the harmonic function

i Ai fi [Hz] ϕi i Ai fi [Hz] ϕi

1 1 0.1050 Random [0,2π) 11 1 0.3210 Random [0,2π)

2 1 0.1525 Random [0,2π) 12 1 0.3751 Random [0,2π)

3 1 f1 +f2 =0.2575 φ1 +φ2 13 1 0.4320 Random [0,2π)

4 0.1 0.3010 Random [0,2π) 14 1 0.4670 Random [0,2π)

5 1 0.4120 Random [0,2π) 15 1 0.0510 Random [0,2π)

6 1 f2 +f4 =0.4535 φ2 +φ4 16 1 0.3410 Random [0,2π)

7 1 f1 +f4 =0.4060 Random [0,2π) 17 1 0.4880 Random [0,2π)

8 1 0.0310 φ1 +φ5 18 1 0.2310 Random [0,2π)

9 1 0.2210 Random [0,2π) 19 1 0.3710 Random [0,2π)

10 1 0.2690 Random [0,2π) 20 1 0.4110 Random [0,2π)

In this study, because of the low leakage, the Hamming window was used. The
synthetic signal was re-sampled to K = 256,M = 256, and the overlapping was 50%.
The bicoherence squared b2 and phase significance were α =αp =0.99, see equations
(31) and (32).

The bicoherence estimate at SNR = ∞ is given in Figure 6. It is clear that
there are two peaks that correspond to the QPC components 3 and 6: at the
bifrequency (0.1523 Hz, 0.1055 Hz) with value b̂2 = 0.9999 and at the bifrequen-
cy (0.3008 Hz, 0.1523 Hz) with the value b̂2 = 0.9950. At the bifrequencies of the
only frequency-coupled component, 7, or the only phase-coupled component, 8, as
expected, there is no peak.

As the noise increases the identification of the QPC worsens, see Figures 5–9. At
about SNR = 5 dB the QPC component 6 disappears. The reason is the very small
amplitude of one component of the QPC component 4. At about SNR = 0 dB the
QPC component 3 also disappears. While 0 dB means equal variance of noise and
signal it can be stated that the QPC identification is very resistant to noise.

5.3. Harmonic Signals with Aliasing

To test the aliasing resistance of the presented methods an additional signal was cre-
ated: to the previous signal two components were added. Both components had an
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Figure 6. Bicoherence of synthetic signal, SNR = ∞ dB.
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Figure 7. Bicoherence of synthetic signal, SNR = 20 dB.
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Figure 9. Bicoherence of synthetic signal, SNR = 0 dB.

amplitude A21 =A22 =1 and random phase, the first with a frequency f21 =0.5512 Hz
and the second with a frequency f22 =0.6103 Hz. Based on the research of Hinich [4],
this will affect the identification. In Figure 10 the affect of aliasing is already seen at
a SNR = 20 dB. At 10 dB of noise the identification of the QPC components is very
low. It is possible to see a small peak at the bifrequency (0.3828 Hz, 0.2226 Hz), and
as noted by Hinich, in the case of aliasing the bispectrum of the outer triangle is not
zero and this can be used as a hallmark of aliasing.

6. The Detection of Faults in DC Electric Motors Using Bispectral Analyses

In this section we will show how we used the presented knowledge to distinguish a
fault in DC electric motor which could not be identified by second order spectral
methods.
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Figure 10. Bicoherence of synthetic signal with aliasing, SNR = 20 dB.

A laser velocimeter was used to provide signals from the vibration at a certain
point on a motor housing (Figure 11).

The data were sampled at a frequency of 22 050 Hz, and before calculating the
bicoherence estimate it was re-sampled to K =256,M =256 (19), and the overlapping
was 50%. The bicoherence and phase significance was α = αp = 0.99, see equations
(31) and (32).

Two typical manufacturing faults of DC electric motors will be analyzed: bearing
fault and a collector fault.
These mechanical faults have very similar power spectrum (Figures 12 and 13), but
as the results will show they have a very different bicoherence estimate (Figures 14
and 15).

While the signal of DC bearing fault does not include any QPC components with
a bicoherence estimate larger then 0.4, the signal of collector fault includes four QPC
components with a b̂2 > 0.4. The difference in the bicoherence of the DC electric-
motor faults is significant enough to identify the different types of faults. By using
power spectrum estimate these two faults could not be distinguished. The quality of
detection of this particular fault by using bispectral analysis is also higher then by
using wavelet transform, which was done in one of our recent studies [20].
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Figure 11. The experimental setup.
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Figure 12. Power spectrum of bearing fault.
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Figure 13. Power spectrum of collector fault.
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Figure 14. Bicoherence of bearing fault.

7. Conclusions

A short overview of bispectral analysis has been presented. An important advantage
of the use of cumulants is that the cumulant of the sum of independent processes is
the sum of the cumulants. While the cumulants of harmonic and Gaussian processes
are zero the bispectrum cannot detect such processes. This property is used in iden-
tification of QPC signals.
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Figure 15. Bicoherence of collector fault.

A numerical example showed that added noise can be used for a better identifica-
tion of QPC and that a suitable number of segments is required for a successful iden-
tification of a process. Using a numerical example it was also shown that up to 5 dB
of signal-to-noise ratio the identification of QPC signals is successful, but then rap-
idly worsens as the noise increases. The numerical experiment showed that the pro-
cedures are also blind for harmonic components, even if they are frequency or phase
coupled.

While the identification of QPC signals is resistant to noise it is quite sensitive to
aliasing. But as Hinich [4] showed, the outer triangle of the bispectrum can be used
for identifying the presence of aliasing, and as a consequence, it can be avoided.

Data from a real experiment was used to demonstrate the ability of the bicoher-
ence estimate in condition monitoring to identify different types of manufacturing
faults in DC electric motors. As an example, two typical faults with different mechan-
ical causes, but with very similar power spectrum, were analyzed. Their bicoherence
estimates differ from each other significantly, and represent a good identification
base.
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