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Abstract

Dividing the whole system into multiple subsystems and a separate dynamic
analysis is common practice in the field of structural dynamics. The sub-
structuring process improves the computational efficiency and enables an
effective realization of the local optimization, modal updating and sensitiv-
ity analyses. This paper focuses on frequency-based substructuring methods
using experimentally obtained data. An efficient substructuring process has
already been demonstrated using numerically obtained frequency-response
functions (FRFs). However, the experimental process suffers from several
difficulties, among which, many of them are related to the rotational degrees
of freedom. Thus, several attempts have been made to measure, expand or
combine numerical correction methods in order to obtain a complete response
model. The proposed methods have numerous limitations and are not yet
generally applicable. Therefore, in this paper an alternative approach based
on experimentally obtained data only, is proposed. The force-excited part
of the FRF matrix is measured with piezoelectric translational and rota-
tional direct accelerometers. The incomplete moment-excited part of the
FRF matrix is expanded, based on the modal model. The proposed proce-
dure is integrated in a Lagrange Multiplier Frequency Based Substructuring
method and demonstrated on a simple beam structure, where the connection
coordinates are mainly associated with the rotational degrees of freedom.
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1. Introduction

The methodology to divide large and complex systems into smaller sub-
systems is common practice in the field of structural dynamics. Analyzing
a subsystem’s dynamics separately, results in less complexity and a higher
computational efficiency. The dynamic properties can be obtained exper-
imentally or numerically. Whenever the system is modified, the dynamic
analysis is reduced only to the given subsystem, which is then merged with
the rest of the structure using a dynamic substructuring (DS) process. By
using DS methods it is possible to effectively perform a local optimization,
modal updating and sensitivity analyses.

Classically, the DS methods can be divided into three subclasses. The
first, so-called Component Mode Synthesis (CMS), is based on the modal
parameters. The second one, Impulse Based Substructuring (IBS), is the
youngest in the family of substructuring methods and is based on the Impulse-
Response Functions (IRFs). The last one, Frequency Based Substructur-
ing (FBS), uses the response model within a coupling process. The FBS
is normally based on experimental data as there is a possibility to directly
measure the Frequency Response Functions (FRFs). Within FBS several
methods have been developed; however, until recently, they have not gained
much popularity. In 2006, the Lagrange Multiplier Frequency Based Sub-
structuring (LM FBS) method was introduced by de Klerk et al. [1]. It
represents a reformulated version of the admittance FBS method proposed
by Jetmundsen et al. [2]. In order to obtain a full-degrees-of-freedom (DOF)
FRF matrix, the measurement of translational as well as rotational responses
must be performed. This can be done effectively if the FRFs are obtained
from a numerical model; however, it still represents a problem whenever the
FRFs are obtained solely by experiment. One of the main difficulties is to
measure the rotational DOF; thus, it is not possible to obtain the full FRF
matrix, which may lead to erroneous results during the substructuring pro-
cess.

There have been various attempts to excite structures with a pure mo-
ment and observe the rotational responses. Some researchers proposed the
finite-differences theory, together with precisely positioned translational ac-
celerometers [3, 4] to measure the rotational DOFs. Several attempts were
made to excite the structure indirectly with the moment by using T-blocks,
the finite-differences method or two synchronous impact hammers [5–7]. The
development of a rotational sensor based on bimorph materials is presented
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in [8]. A method to deduce the rotational modal shapes by measuring the
strains is shown in [9]. Despite extensive research in this field, the presented
methods have limitations and are not yet generally applicable. Thus, some
researchers try to combine experimental and numerical approaches [10, 11] in
order to improve/update the measurements. In some cases the rotations are
not even considered in the coupling process [11, 12] and only the translational
DOFs are used.

The objective of this paper is to present the substructuring process based
on an experimentally obtained, full-DOF response model together with the
LM FBS method. The rotations are measured using a quartz-based piezo-
electric rotational accelerometer that is well established in the car-safety
testing industry [13], although it has not yet gained much popularity in the
field of experimental modal analysis (EMA). In order to obtain the full-FRF
matrix during the substructuring process it is necessary to measure the ex-
citation force as well as the excitation moment. In this paper an alternative
approach is proposed where the moment-excited part of the FRF matrix
is deduced based on the introduction of the modal model. To generate a
complete response model, modal shapes and not generally considered modal-
shape slopes will be included in the FRF synthesis algorithm. Moreover,
with the curve-fitting process, the procedure makes it possible to smooth the
response functions, which additionally improves the quality of the substruc-
turing process.

The following section briefly summarizes the LM FBS method. In Section
3, the inclusion of the rotational degrees of freedom into the response and
modal model will be presented. The fourth section presents the characteris-
tics of a piezoelectric rotational accelerometer and, finally, the applicability
of the developed method is demonstrated on a simple beam structure.

2. LM FBS method

The LM FBS method requires the full-DOF FRF matrix and the eval-
uation of the compatibility conditions. The FRFs represent the dynamic
stiffnesses between an arbitrary combination of the DOF on the subsystems.
With compatibility conditions, one uniquely defines the mutual connections
between the subsystems. The theory in this section summarizes the work of
de Klerk et al. [1].

The dynamics of an arbitrary subsystem s can be theoretically determined
by the equation of motion in the time domain as:
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M (s) ü(t)(s) +C(s) u̇(t)(s) +K(s) u(t)(s) = f(t)(s), (1)

where M (s), C(s) and K(s) represent the mass, damping and stiffness ma-
trices of subsystem s, respectively. The variable f (s) stands for the force
excitation vector of the subsystem. Using a Fourier transformation, Eq. (1)
can be transformed into the frequency domain as:

[−ω2M (s) + jωC(s) +K(s)]U(ω)(s) = F (ω)(s), (2)

where U (s) generally stands for the displacement, velocity or acceleration
vector. Eq. (2) can be further rewritten as:

Z(ω)(s)U(ω)(s) = F (ω)(s), (3)

where

Z(ω)(s) = [−ω2M (s) + jωC(s) +K(s)], (4)

stands for the dynamic stiffness matrix. The mass, damping and stiffness ma-
trices are not separately available when dealing with experimentally obtained
data. Thus, Eq. (3) needs to be reformulated in the form:

Y (ω)(s) F (ω)(s) = U(ω)(s), (5)

where Y (ω)(s) is the subsystem’s response matrix (Y = Z−1). The response
matrix contains all the combinations of FRFs between the input excitation
and the output response points. These are used in a dual manner formulated
LM FBS method.

The coupling process based on the FRF matrix also requires compati-
bility conditions. The Boolean mapping matrix B defines the subsystems
mutual relationship at the connection points. For rigid joint connections,
the compatibility matrix is defined as:

BU = 0. (6)

Implementing the compatibility condition in Eq. (3) results in:

Z U +BT λ = F , (7)
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where λ are Lagrange multipliers representing the connection joints forces.
the final matrix notation of the dual assembled system is a combination of
Eqs. (6) and (7): [

Z BT

B 0

](
U
λ

)
=

(
F
0

)
. (8)

Eliminating λ from Eq. (8) returns the final response matrix of the coupled
subsystems:

Y (tot) = Y − Y BT(BY BT)−1BY . (9)

3. Combination of the response and modal model

The LM FBS method is based on a full-DOF response model. The sub-
system’s dynamics can be obtained numerically or experimentally. It is also
possible to update the numerical model with measurements, or vice versa.
The purpose of this paper is to perform a substructuring process based on
experimentally obtained data. A complete response model requires measure-
ments of the translations and rotations, as well as the force and moment
excitations. The measurement of the translational response is already well
established in the field of EMA; however, here we have additionally performed
measurements of the rotations using a quartz-based, piezoelectric, rotational
accelerometer. As force-excited structural responses represent only the left-
hand part of the FRF matrix it is necessary to also obtain the right-hand
moment-excited part of the FRF matrix. Because it is difficult to apply a
pure moment excitation, here an alternative approach is proposed, where the
moment-excited part in the FRF matrix is deduced based on the introduction
of the modal model. If it is possible to measure at least one full column in the
FRF matrix, the modal parameters can be obtained using well-established
modal parameter estimation (MPE) methods. Thus, the required full-DOF
FRF matrix can be finally obtained, based on estimated modal parameters.
The proposed procedure, which is schematically presented in Fig. 1, enables
the reconstruction of unmeasured data and additionally the smoothing of the
response functions.

As the inclusion of rotations expands the response and modal domain
formulations, a brief explanation of both will be presented [14, 15]. The
response model introduces the FRFs that represent the relationship between
the excitation and the response point as:

X(ω) = H(ω)F (ω), (10)
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Figure 1: Process of obtaining full degrees of freedom FRF matrix.

where X(ω) represents the response vector, H(ω) is the FRF matrix and
F (ω) is the excitation vector in the frequency domain. Whenever the ex-
citation and the response are at the same point on the structure, the FRF
represents the driving point response function and the transfer response func-
tion when they differ. The matrix H(ω) in Eq. (10) can be divided into three
parts: lower residuals (LR), flexible modes (FM) and upper residuals (UR).
Because each mode contributes a portion to the final response function, none
of them should be omitted. The expanded formulation of the system response
function including all the translational and the rotational degrees of freedom
can be written as:
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H(ω) =

{
H(ω)Tdof

H(ω)Rdof

}
=

=

{
{LR}Tdof

{LR}Rdof

}
+

{
{FM}Tdof

{FM}Rdof

}
+

{
{UR}Tdof

{UR}Rdof

}
. (11)

In general, each node on the continuous system consists of six DOFs or at
least one translation and an associated rotation for simplified one-dimensional
systems. Combinations between the translational and rotational DOFs can
be presented by defining four parts in the FRF matrix:

H(ω) =

[
T-T R-T
T-R R-R

]
. (12)

The left-hand part of the FRF matrix represents the force-excited and the
right-hand part, the moment-excited FRFs. Translational responses are lo-
cated on the upper part and rotations on the lower part of the FRF matrix.
The full DOF FRF matrix, where all the experimental points on the structure
are defined by six DOFs, is rarely used in the field of experimental dynamics.
Usually, only the upper left-hand quarter is used as it is difficult to obtain
reliable measurements of the FRF associated with rotations.

In this paper the complete left-hand part of the H(ω) matrix is obtained
from the measurements (see Fig. 1 (Stage 1)). As it is also necessary to obtain
the right-hand part, the modal model is additionally introduced into the anal-
ysis. With advanced poly-reference MPE methods, such as the least-square
complex exponential (LSCE) or the least-square frequency domain (LSFD),
we can accurately estimate the modal parameters. The LSFD method is also
capable of estimating the lower and upper residuals.

The system’s dynamic properties in the modal domain are defined by the
modal parameters. Modal shapes are well established; however, the modal-
shape slopes are not frequently used within EMA. They represent a slope or
first derivatives of classical modal shapes. There are some methods to obtain
modal-shape slopes by a derivation of the modal shapes [16, 17], neverthe-
less this procedure is very sensitive to small errors and noise in the modal
shapes and can lead to a meaningless result after the derivation. Thus, it
is essential to directly measure the rotational DOFs on the structure itself.
Fig. 1 (Stage 2) shows typical mode-shape vectors for a simple beam struc-
ture that can be extracted from each part of the FRF matrix (Eq. 12) with
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a roving sensor technique. After mass normalization, the modal shapes and
the modal-shape slopes in Fig. 1 (Stage 3) are equal, regardless of whether
they are obtained from force- or moment-excited response functions.

A complete dynamic analysis, including all of the existing modes, is avail-
able solely for analytical or numerical systems. Whenever the structure is
analyzed experimentally, only a finite number of modes from a limited fre-
quency range can be obtained. Dynamic responses below and above that
range are not available, even though they exist in the structure. Inaccessible
low- and high-frequency residuals are crucial in the FRF synthesis process.
They mostly influence the anti-resonances, which are local characteristics
between particular input and output measuring points. Even a small error
in the synthesized FRF can lead to an erroneous result during the substruc-
turing process. Extended notation of the general FRF synthesis equation,
including the residuals effect, takes the following form:

hsyn
ij (ω) = −

RLR
ij

ω2
+

m2∑
r=m1

φir φjr

(ω2
r − ω2)− j2ξrωrω

+RUR
ij , (13)

where lower and upper residuals are defined by:

−
RLR

ij

ω2
=

m1−1∑
r=1

φir φjr

(ω2
r − ω2)− j2ξrωrω

, (14)

RUR
ij =

N∑
r=m2+1

φir φjr

(ω2
r − ω2)− j2ξrωrω

, (15)

respectively, and hsyn
ij (ω) stands for the synthesized FRF matrix, ωr is the

r-th natural frequency, φir and φjr are the mass-normalized modal shape vec-
tors and ξr is the r-th modal damping ratio. It is difficult to experimentally
obtain the full DOF FRF matrix required in the FBS process. Therefore, the
measured, force-excited part of the FRF matrix is transformed into a modal
domain. The poly-reference MPE LSFD method enables us to estimate RBM
and FM. The UR, widely discussed in [18], requires special consideration.
They could be included from the equivalent numerical model or estimated
from a measurement of all the necessary FRF curves in the range of interest.
An alternative method was proposed by Ewins [19] to measure the FRFs high
above the frequency range of interest. Due to the low modal density, in our
simple structure, the inclusion of out-of-range modes sufficiently eliminates
the UR effect.
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4. Quartz-based piezoelectric rotational accelerometer

There are several methods to measure the rotational response of a struc-
ture. Besides indirect methods, where rotations are estimated from measured
translations, some direct methods are also available that are much more re-
liable and accurate. In this paper a quartz-based, piezoelectric, rotational
accelerometer (Kistler type 8840) was used. Despite some alternative solu-
tions based on micro-electromechanical systems (MEMS) [20], piezoresistive
or bimorph [8] material, the dynamic performance of piezoelectric sensors is
usually significantly better (Table 1).

Table 1: Technical data of quartz-based piezoelectric rotational accelerometer, Kistler type
8840.

Technical data Units Value

Acceleration Range k rad/s2 ±150
Sensitivity µV/rad/s2 35.5
Frequency Response, ±10 % Hz 1. . . 2000
Resonant Frequency mounted kHz 23
Transverse Sensitivity % 1.5
Mass grams 18.5

A rotational accelerometer (Fig. 2) is commonly used in car-safety tests
and for the active control of oscillating shafts. A precise construction, the
piezoelectric effect and a low cross sensitivity enable an effective measurement
of rotations also in the field of structural dynamics. The interested reader is
referred to [13] for additional information.
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Figure 2: Inner construction of quartz-based piezoelectric rotational accelerometer.

5. Case study

The applicability of the proposed method is demonstrated on a simple
beam structure. The rectangular cross-section beam AB represents the main
system, which is divided into the two unequally long subsystems A and B
during the substructuring process (Fig. 3). In this paper the dynamic re-
sponse of the beam AB will be obtained by coupling the dynamics of its two
subsystems. Even though a very simple system is analyzed, several difficul-
ties occur due to the measured FRFs associated with the rotational degrees
of freedom. The geometry and material properties of the system and both
subsystems are presented in Table 2. The beam A was discretized with 7 and
beam B with 5 uniformly distributed nodes. For each node the translational
acceleration in the y direction and the rotational acceleration around the
z axis were measured. The free-free boundary conditions were considered.
The presented case study is completely based on the experimentally obtained
data. At each step of the process, the quality of the experimental data are
compared with the reference numerical model.

Although the structure in case study presents a frequently analyzed sys-
tem within EMA, several issues had to be resolved in order to obtain reliable
measurements. Generally, two sources of errors can be introduced during the
measurements. First, there are the random errors that introduce uncertainty
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Figure 3: Division of beam AB into the subsystems A and B with node numbers and
definition of the cross-section.

Table 2: System’s geometrical and material properties.

Parameter Units Value

A mm 600
B mm 400
AB mm 1000
w mm 30
h mm 50
ρ kg/m3 7933
E GPa 210

into the measured data that are normally not under control. The second type
are the bias or systematic errors. Here, the errors introduce systematically
shifted values of the resonances and anti-resonances. The interested reader
can find more about errors in [21, 22].

In order to reduce the bias errors, extra attention was focused on the
selection of the appropriate length and type of ropes that represent the free-
free boundary conditions. This strongly impacts on the rigid-body modes
and, consequently, on the positions of the anti-resonances. The force exci-
tation was performed with a rail-guided modal hammer (Fig. 4) to provide
an accurate force impact location. The translational and rotational accel-
erations were measured with precisely positioned, oriented and calibrated
piezoelectric accelerometers to minimize the cross sensitivity. The mass of
the attached sensors was compensated with dummy masses at all the mea-
surement locations and sequentially replaced with a roving accelerometer.
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a) c)

b)

Figure 4: Experimental setup of subsystem A; a) Rail-guided impact hammer and free-free
boundary conditions, b) Translational accelerometer, c) Rotational accelerometer.

During the signal processing an additional error can be introduced. Modal
truncation is certainly one of the major issues when dealing with EMA. It is
impossible to obtain all modal shapes and include them into the substructur-
ing process. Beside flexible modes, also rigid-body modes and upper residuals
need to be considered.

Applying the proposed procedure to both subsystems results into two full
DOF FRF matrices YYY A and YYY B. They are then combined together into a
single matrix, defined as:

Y (ω) =

[
YA 0
0 YB

]
, (16)

which is inserted into Eq. (9). The connection between both subsystems is
rigid, which can be expressed with Boolean mapping matrix as:

B =

[ 1Ay 1Arz 2Ay 2Arz ... 7Ay 7Arz 1By 1Brz ... 5By 5Brz

0 0 0 0 ... 1 0 −1 0 ... 0 0
0 0 0 0 ... 0 1 0 −1 ... 0 0

]
, (17)
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where one boundary node for each subsystem is coupled with two degrees of
freedom.

The analyzed frequency range is conditioned by the technical specifica-
tions of the measurement equipment. The frequency range is defined by a
rotational accelerometer, which is calibrated between 1 and 2000 Hz. How-
ever, preliminary measurements revealed very good agreement between the
FRFs and the numerical model up to 4100 Hz, which was set as the upper
limit in all the measurements. Within the frequency range, a relatively small
modal density, (4 FM in the subsystem A and 3 FM in the subsystem B)
appears. The fifth FM for subsystem A and the fourth FM for B appear
at 5872 Hz and 5350 Hz, respectively. Those two have some influences on
the lower frequency range, but almost negligible influence below 1600 Hz.
The latter frequency was set as the upper limit in the following results. The
ability to measure the dynamical response of a simple beam structure high
above the interval of interest makes it possible to successfully perform the
required FRF synthesis.

5.1. Substructuring results

The proposed dynamic substructuring process is divided into four steps:
measurement, curve fitting, FRFs synthesis and final coupling. The main dif-
ficulty with the experimental dynamic substructuring methods is the quality
of the measured FRFs. It is well known that the substructuring process is
effective and reliable whenever the FRFs are obtained based on numerical
or analytical models [2, 23]. Therefore, good agreement between the mea-
sured and the numerically obtained FRFs is essential to successfully perform
an experimentally based substructuring process. Thus, numerically obtained
FRFs based on a finite-element model (FEM) are presented in order to esti-
mate the quality of the measured FRFs and to finally show the influence of
real measurement data on the quality of the substructuring algorithm. To
simplify the presentation, all the intermediate results and observations are
related only to the subsystem A.

Figure 5 shows the subsystem A driving- and transfer-point FRFs for
the translational and rotational acceleration response. The positions, shapes
and amplitudes of the resonance as well as the anti-resonance regions are in
good agreement with the numerical model. The random noise in rotational
FRFs is present mostly due to the rotational accelerometer’s characteristics.
Even though a special effort was made with the experimental setup, a small
amplitude peak can be observed around 730 Hz in Figure 5 d. It is related
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to the dynamic response of the beam in the z direction that appears as the
cross-sensitivity effect also in the y direction. As will be shown later, it does
not significantly affect the quality of the final results.
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Figure 5: Comparison between numerically ( ) and experimentally ( ) obtained FRFs;
a) FRF2y2y, b) FRF2y2rz, c) FRF3y5y, d) FRF3y5rz.

The modal parameters were estimated based on five columns in the FRF
matrix (force excitation from nodes 2 to 6 on the beam A) with the poly-
reference LSFD MPE method. First, three mass-normalized modal shapes
and modal-shape slopes are presented in Fig. 6. Good agreement between
the experimentally and numerically obtained modal shapes was observed due
to the high quality of the measured FRFs. Rigid-body modes were also esti-
mated from the measurements, while the contribution of the upper residuals
was indirectly included by accounting for higher flexible modal shapes in the
FRF synthesis process.
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Figure 6: Comparison of numerical ( ) and experimental ( ) modal shapes (MS) and
modal-shape slopes (MSS); a) MS-1, b) MSS-1, c) MS-2, d) MSS-2, e) MS-3, f) MSS-3.

The experimentally obtained RBM and FM were used in Eq. (13) to
synthesize the FRFs in all four quadrants of the FRF matrix. A couple
of results from each quadrant are shown in Fig. 7 and Fig. 8. With the
FRF synthesis a random noise is eliminated and a satisfactory correlation
with the numerical data is obtained. Anti-resonances are slightly shifted,
mainly due to the errors in the estimated RBM and the compensation of
UR with modes outside the range of interest. Comparing the force-excited
experimental FRFs in Fig. 5 with the synthesized FRFs in Fig. 7 it seems
that the regenerated FRFs are less accurate than those measured directly.
The actual difference is in the range of 0.05 m/s2/N, which escalates due to
the logarithmic scale on the amplitude axis. Nevertheless, the quality of the
synthesized force- and moment-excited FRFs is acceptable.
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Figure 7: Comparison of numerical ( ) and synthesized ( ) FRFs; a) FRF2y2y, b)
FRF2y2rz, c) FRF3y5y, d) FRF3y5rz.
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Figure 8: Comparison of numerical ( ) and synthesized ( ) FRFs; a) FRF1rz1y, b)
FRF1rz1rz, c) FRF2rz5y, d) FRF2rz5rz.
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The final results of the coupled subsystems A and B in Fig. 9 are compared
with references based on the numerical model and the measured FRFs of
the system AB. The resonance and anti-resonance frequencies are slightly
shifted, moreover the amplitudes are not in complete agreement with the
references. Although the coupled FRFs do not match perfectly with the
references, the proposed procedure with the included measured rotations
provide relatively good results in a particular case study. The quality of
the results can be additionally improved by upgrading the procedure with
numerically supported algorithms like the VIKING method [11].
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Figure 9: Comparison between coupled ( ), numerically ( ) and experimentally ( )
obtained FRFs of system AB; a) FRF3y1y, b) FRF3y1rz, c) FRF3y3y, d) FRF3y3rz.

6. Conclusions

This paper presents a method to obtain a full-degrees-of-freedom FRF
matrix based on measurements to effectively perform a frequency-based sub-
structuring process. For measuring the rotations a quartz-based, piezoelec-
tric, rotational accelerometer was used. The response model was expanded
with a modal model and implemented in the LM FBS method. The appli-
cability of the proposed method was demonstrated in a case study where
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the dynamic response of a steel-beam system was obtained by coupling the
dynamic responses of its two subsystems. Even though the coupled FRFs
do not match perfectly with the references, very promising results can be
achieved by the inclusion of measured rotations in the proposed method. For
more complex applications, an additional improvement can be implemented
by upgrading the proposed method with numerical updating algorithms.
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