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Abstract

The dynamic behavior of assembled structures is strongly influenced by the dynamic properties of connec-
tions between the individual substructures, commonly referred to as joints. Accurately predicting assembly
dynamics relies on identifying joint properties, which are influenced by factors such as preload, temperature,
and vibration amplitude. These interactions make analytical and numerical modeling challenging, necessi-
tating an experimental modeling approach. This study presents a joint identification framework inspired
by the Lagrange multiplier frequency-based substructuring, along with four mutually independent modi-
fications to the identification approach. These modifications comprise sparse regression, rigid-body mode
constraints, excitation direction updating, and indirect parametrization. A parametrization-based approach
is employed for estimating the mass, damping, and stiffness properties of the joint. The numerical and
experimental results highlight the benefits of each modification and demonstrate the effectiveness of the
proposed framework for robust joint property estimation.

Keywords: joint identification, regularization, virtual point transformation, impact excitation, dynamic
substructuring

1. Introduction

Assembly dynamics can be estimated by combining dynamic models of the individual components
through the compatibility of connecting interface displacements and the equilibrium of interface forces,
also known as dynamic substructuring (DS) [1]. However, connections within real structures are often com-
plex, as they rely on connecting elements that may not strictly satisfy these idealized constraints. This
makes DS predictions inaccurate, especially in cases where resilient elements are used to connect individual
substructures. This type of connection further deviates from the traditional exact compatibility constraints
typically assumed in DS, and thus requires more sophisticated modeling approaches. Two main strategies
have been widely adopted to account for real-world connections, namely the transmission simulator (TS) [2]
and joint identification, although they are generally not interchangeable as each of the two typically serves
a distinct purpose. The TS approach introduces an additional TS substructure into the substructuring
procedure in order to replicate the interface conditions which are present in the final assembly. By adjusting
the DS procedure to include the additional substructure, the interface conditions are implicitly accounted
for, improving the prediction of assembly dynamics.

Alternatively, the dynamic properties of the interface connections can be identified separately in what
is known as joint identification, where the connections between individual substructures are referred to as
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joints [3]. Instead of assuming idealized rigid joints, the identified dynamic properties of the joints are used
to indirectly couple the individual substructures. Joint identification strategies generally rely on measuring
the assembly dynamics and isolating the joint by removing the effects of the individual substructures [3].
Since the final assembly is often not available during virtual prototyping, a separate test assembly can
be utilized, where the connections between the individual substructures should accurately replicate the
connections between the substructures in the final assembly [4]. This approach is especially suitable for
virtual prototyping, e.g. to design resilient mounts with the desired dynamic properties, or when modifying
several substructures within an assembly [5]. Care should be taken to ensure the interface conditions are
accurately replicated, including potential preloads, vibration amplitude, temperature, etc. [6]

Typical joint identification methods thus require obtaining the frequency-response functions (FRFs) of
the assembly and its individual components. Tsai and Chou developed a method for joint identification
based on measured FRFs, where the joint was described in terms of stiffness and damping parameters
while neglecting the joint mass [3]. Their approach assumed incompatible interface displacements, forming
a gap at the interface between the individual substructures. The joint produces reaction forces opposing
the opening of the interface gap. Wang and Liou used a similar set of assumptions in [7] and addressed
the problem of measurement errors by introducing an improved joint identification approach with the aim
of reducing the number of inverse matrix operations. In the presence of measurement noise, their method
improved the identification consistency, as matrix inversion can lead to magnification of noise and mea-
surement errors, typical for ill-conditioned matrices. Ren and Beards presented a parametrization-based
approach which modeled the joint as a separate substructure within an assembly [8]. In addition to the
inclusion of an interface gap, they also eliminated the interface force equilibrium constraint. If the joint
mass is significant, the interface forces of the adjacent substructures are no longer in equilibrium. Therefore,
their approach allowed for the inertial properties of the joint to be accounted for. The authors continued
their work by addressing the problem of stiff joints by combining the above approach with substructure
coupling to identify only the compliant joints [9]. Yang et al. modeled the joint only in terms of a stiff-
ness matrix [10]. Both translational and rotational degrees of freedom (DoFs) were accounted for in their
formulation, including cross coupling terms, which refer to the relationship between non-collocated DoFs.
Čelič and Boltežar extended the joint identification method of Ren and Beards by considering rotational
DoFs and demonstrated that neglecting rotational DoFs can lead to a decrease in identification accuracy
[11]. The authors also analyzed the influence of the reduction of internal and joint DoFs on joint identifica-
tion consistency [12]. They demonstrated that it is not feasible to reduce the joint DoFs if a parametrized
joint model is considered. Wang et al. modeled the joint in terms of its admittance matrix and derived an
approach for joint identification similar to the method proposed by Ren and Beards [13]. Their method
was augmented by estimating the unmeasured assembly FRFs to further overdetermine the identification.
Batista et al. presented an iterative approach to joint identification and developed a frequency selection
criterion relying on the matrix condition number [14]. Mehrpouya et al. investigated two methods for joint
identification, namely the inverse receptance coupling (IRC) and the point-mass model [15]. Both methods
considered the joint in terms of linear springs and dampers without cross coupling terms and included the
joint mass. The IRC method proved to be advantageous due to significantly lower computation time and
reduced experimental effort. The IRC method was later extended for the identification of multiple joints in
[16] by considering only the out-of-plane stiffness and damping parameters of the joints. Mehrpouya et al.
also applied joint identification to 3D structures in [17], where the cross-coupling terms were accounted for.

Meggitt et al. used an inverse substructuring (IS) approach to obtain the joint and the individuals sub-
structures’ dynamics by measuring only the assembly dynamics [18], which was demonstrated on resiliently
coupled structures. A twelve DoF model of rubber isolators was obtained in [6] using frequency-based
substructuring (FBS), as well as IS. Although FBS can be more generally applied, measurements of the in-
dividual substructures and the assembly are required, while IS requires only measurements of the assembled
structure. The approach utilized the virtual point transformation (VPT) [19] to include rotational DoFs of
the joint. The VPT assumes the interface motion can be described by a set of interface deformation modes
(IDMs). This allows to apply a geometric transformation to the measured interface DoFs to obtain a set of
virtual point (VP) DoFs described by the selected IDMs.

The introduction of system equivalent model mixing (SEMM) allowed to expand a set of measured FRFs
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at easily accessible locations to inaccessible interface DoFs of a numerical model to improve its accuracy
in a hybrid model [20]. SEMM has been modified to allow for joint identification by iteratively expanding
the measured assembly dynamics to the estimated assembly dynamics obtained by coupling the individual
substructures with the joint model from the previous iteration. By subsequently decoupling the substructures
from the hybrid model, an improved joint model is obtained. This procedure is repeated until convergence
[21, 22, 23, 24]. Additional efforts have been made to reduce errors and improve identification accuracy
[25, 26].

A prerequisite for consistent joint identification is a suitable representation of the interface, i.e. selecting
the appropriate number of interface DoFs, which was demonstrated in [27]. Apart from the number of
interface DoFs, it is important to select the appropriate type of interface description, especially when
dealing with continuous interfaces [28]. In addition, the appropriate choice of compatibility and equilibrium
conditions can significantly improve decoupling accuracy [29].

The identification of bolted joints receives significant attention, as they are commonly used to connect
individual parts [4, 30, 31]. Due to their significant influence on assembly dynamics, joint identification
remains an active topic of research, with the recent works focusing on the robustness of the identification
[32], viscoelasticity [33], welded joint properties [34], and rubber isolators [35]. Advancements in machine
learning have also facilitated the adoption of data-driven approaches in structural dynamics, including joint
identification [36] and structural health monitoring [37].

A common challenge linked to joint identification is the measurement inaccuracies and noise polluting
the measurements, adversely affecting the identified joint. Similarly, inconsistencies between the dynamic
properties of the substructures in the assembly and the individual substructure models in the uncoupled
state result in decoupling error, which propagates to the identified joint model [38, 39]. This study focuses
on obtaining a physical-domain representation of the joint, also known as joint parametrization. To allow for
the coupling of arbitrary substructures, a twelve-DoF joint model is adopted [6]. A reformulation of the Ren
and Beards’ approach in [8] is presented, inspired by the Lagrange multiplier frequency-based substructuring
(LM-FBS). To address the issues associated with measurement inaccuracies, four procedures are proposed
with the aim of improving the accuracy of the identified joint:

1. Sparsity of the joint model is promoted by applying the Least Absolute Shrinkage and Selection
Operator (LASSO) [40]. The significance of some parameters in the traditional least-squares (LS)
procedure may be caused by measurement errors. The aim of applying LASSO is to neglect these
terms and therefore improve the identification consistency.

2. Modeling the interface using the VPT requires knowing locations and directions of measured response
and excitation DoFs [19]. Since sensor locations can be replicated with reasonable accuracy, the errors
are assumed to be predominantly caused by inaccurate impact excitation [41]. With well-spaced
excitations, the relative location error decreases, while excitation directions errors remain unchanged.
In this case, excitation inaccuracy is dominated by excitation direction errors. An iterative algorithm
for excitation direction updating is proposed, which is applied prior to the joint identification.

3. The direct application of LS (or LASSO) to obtain the joint parameters may result in a physically
inconsistent joint model. For the proposed twelve-DoF joint model, no force should be required to
perform rigid-body motion if the joint mass is neglected. Therefore, the damping and stiffness matrices
should be constrained such that rigid-body motion requires no force, resulting in rank deficiency of
these matrices.

4. The formulation in [8] directly performs joint parametrization based on the measured FRFs. An
alternative approach is proposed by splitting the formulation in [8] to first directly identify the dynamic
stiffness matrix of the joint, followed by the parametrization.

All of the above procedures are mutually independent, allowing for arbitrary combinations, resulting
in 16 distinct approaches. All 16 approaches are first assessed in the numerical study, followed by an ex-
perimental study, in order to validate the results of the numerical study. The remainder of the paper is
organized as follows: Section 2 summarizes the theory of joint identification based on measured FRFs and
joint parametrization. Section 3 describes the four modifications aiming at improving the joint identification
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accuracy. Section 4 presents the numerical study with the results and corresponding discussion. The exper-
imental study is described in Section 5, including experimental results and discussion. Finally, conclusions
are drawn in Section 6.

2. Joint identification in the physical domain

The beginning of this section briefly introduces the notation used in this paper. Following the notation
used in [1], the frequency-domain equation of motion, relating the displacements of a structure to the external
forces, is written as:

(

−É2M(s) + jÉC(s) + jD(s) +K(s)
)

u(s)(É) = f (s)(É), (1)

where u(s)(É) and f (s)(É) respectively denote the frequency-dependent vectors of displacement and external
force. M(s), C(s), D(s), and K(s) are the mass, viscous damping, structural damping, and stiffness matrices,
É denotes the excitation angular frequency, and the superscript ⋆(s) denotes a quantity pertaining to the
substructure (s). Defining the sum of the matrices in Eq. (1) as the frequency-dependent dynamic stiffness
matrix Z(s)(É) allows the equation of motion to be written as:

Z(s)(É)u(s)(É) = f (s)(É). (2)

By inverting the impedance matrix Z(s)(É), the equation of motion can be expressed in terms of the admit-
tance matrix Y(s)(É):

u(s)(É) = Y(s)(É)f (s)(É), where Y(s)(É) ≜
(

Z(s)(É)
)−1

. (3)

Expressing the equation of motion by considering Eq. (3) is experimentally advantageous, as each term in
Y(s)(É) contains a single FRF, which can be easily obtained by measuring the responses to known excitation
forces. With the aim of improving readability, the remainder of the paper will omit explicitly denoting the
frequency dependence.

2.1. Joint isolation

The joint identification formulation in this paper is inspired by the LM-FBS, however, it is mathematically
equivalent to the approach presented in [8]. The derivation starts by obtaining the coupling equation and
subsequently expressing the terms pertaining to the dynamic stiffness of the joint. First, the displacements,
forces, and admittance matrices are defined:

u =

[

uA

uB

]

, f =

[

fA

fB

]

, g =

[

gA

gB

]

, YA|B =

[

YA

YB

]

, (4)

where g and YA|B denote the vector of connecting interface forces and the uncoupled block-diagonal ad-
mittance matrix, containing admittance matrices of substructures A and B. Furthermore, the DoFs are
partitioned into interface and internal DoFs:

uA =

[

uA
1

uA
2

]

, uB =

[

uB
3

uB
4

]

, fA =

[

fA
1

fA
2

]

, fB =

[

fB
3

fB
4

]

, gA =

[

0

gA
2

]

, gB =

[

gB
3

0

]

, (5)

where subscripts ⋆1 and ⋆4 denote the internal DoFs, while subscripts ⋆2 and ⋆3 denote the interface DoFs
of substructures A and B, respectively. The initial equation of motion is written as:

u = YA|B (f + g) , (6)

where the unknown forces gA
2 and gB

3 act on the interface DoFs of A and B, respectively. Taking into account
the connecting interface forces g in the uncoupled equation of motion applies the connecting forces g to the
interface, which effectively couples the substructures.
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The joint is considered here as a separate substructure, with its equation of motion written in the
impedance form:

ZJuJ = λ ô

[

ZJ
22 ZJ

23

ZJ
32 ZJ

33

] [

uJ
2

uJ
3

]

=

[

λ2

λ3

]

, (7)

where λ denotes the interface forces of the substructures A and B acting on the joint. The impedance
formulation allows to neglect arbitrary terms in the joint’s system matrices without sacrificing the existence
of its admittance matrix due to rank-deficiency of the impedance matrix.1 The term system matrices refers
to the set of mass, stiffness, viscous damping, and structural damping matrices of the joint for the remainder
of the paper.

In order to obtain the coupled admittance matrix, the unknown interface forces g must be eliminated
from Eq. (6). The joint identification problem assumes the substructures A and B are not directly attached
to one another, but are connected by a joint. Coupling A and B with the joint requires satisfying the
interface displacement compatibility and interface force equilibrium constraints:

[

uA
2

uB
3

]

=

[

uJ
2

uJ
3

]

, (8a)

[

gA
2

gB
3

]

+

[

λ2

λ3

]

=

[

0

0

]

. (8b)

Inspired by the the LM-FBS formulation [1], two boolean matrices are defined to enforce the compatibility
and equilibrium equations:

BJ
uu = uJ, (9a)

g = −BJ
f

¦
λ. (9b)

The joint forces are calculated by replacing uJ in Eq. (7) with Eq. (9a) and are inserted into Eq. (9b):

λ = ZJBJ
uu, (10)

g = −BJ
f

¦
ZJBJ

uu. (11)

The interface forces g in Eq. (6) can now be eliminated:

u = YA|B
(

f −BJ
f

¦
ZJBJ

uu
)

. (12)

Next, the displacements u are factored out:

u = YA|Bf −YA|BBJ
f

¦
ZJBJ

uu,
(

I+YA|BBJ
f

¦
ZJBJ

u

)

u = YA|Bf ,

u =
(

I+YA|BBJ
f

¦
ZJBJ

u

)−1

YA|Bf .

(13)

The product of matrices multiplying the external forces in Eq. (13) represents the coupled admittance matrix
YAJB:

YAJB =
(

I+YA|BBJ
f

¦
ZJBJ

u

)−1

YA|B. (14)

Eq. (14) allows to couple the joint impedance with the admittance matrices of the individual substructures.
If both the coupled and uncoupled admittance matrices are known, the joint can be identified by rearranging
Eq. (14):

YA|BBJ
f

¦
ZJBJ

uY
AJB = YA|B −YAJB. (15)

1Describing the dynamics of a joint with free boundary conditions only in terms of a stiffness matrix prevents the calculation
of the admittance matrix. Since the stiffness matrix requires no force to perform rigid-body displacements, the matrix is rank-
deficient and therefore not invertible.
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In [8], four equations for joint identification are presented, which are combined into a single equation here.

The equivalence of Eq. (15) and the equations in [8] can be seen by pre-multiplying Eq. (15) by YAJBYA|B−1

and post-multiplying by YAJB−1
YA|B, providing the alternative form of Eq. (15):

YAJBBJ
f

¦
ZJBJ

uY
A|B = YA|B −YAJB. (16)

For the sake of consistency, the alternative form expressed in Eq. (16) is considered for the remainder of the
paper.

2.2. Joint parametrization

The dynamic stiffness of the joint can be directly obtained by calculating the left and right inverse of

YAJBBJ
f

¦
and BJ

uY
A|B, respectively, however, we are interested in obtaining the system matrices of the

joint, i.e. parametrizing the joint. Due to the high dynamic range of the FRFs in Eq. (16), the terms in
the vicinity of the eigenfrequencies dominate the entire system of equations. Even if the equations are
weighted per frequency, the response amplitudes can significantly deviate between the measured DoFs,
therefore, additional weighing is advised to use the measured information more effectively. In [8], different
weighting techniques were proposed. Consistent with their findings, it was observed that the Weighting-
Before (transformation)-Group (equations) method (WBG) is advantageous. The WBG method calculates
a frequency-dependent diagonal weighting matrix W, where each term is calculated as the reciprocal of

the root-mean-square value of the corresponding row in the product YAJBBJ
f

¦
. Eq. (16) is subsequently

pre-multiplied by the matrix W:

WYAJBBJ
f

¦
ZJBJ

uY
A|B = WYA|B −WYAJB. (17)

Since all of the unknown variables are gathered in the matrix ZJ, (column-major) vectorization is performed:
(

(

BJ
uY

A|B
)¦

¹
(

WYAJBBJ
f

¦
)

)

vec
(

ZJ
)

= vec
(

WYA|B −WYAJB
)

, (18)

where ¹ denotes the Kronecker product of the adjacent matrices and vec(⋆) refers to the column-major
vectorization of the matrix ⋆. For brevity, we define the following:

A1 ≜

(

BJ
uY

A|B
)¦

¹
(

WYAJBBJ
f

¦
)

,

y ≜ vec
(

WYA|B −WYAJB
)

.
(19)

Writing the joint impedance matrix in terms of the system matrices leads to the joint parametrization:

ZJ = −É2MJ + jÉCJ + jDJ +KJ. (20)

Replacing the joint impedance in Eq. (18) with the system matrices is facilitated by rewriting Eq. (20) in
the following form:

ZJ = PΩ, where P ≜
[

MJ CJ DJ KJ
]

and Ω ≜









−É2I

jÉI
jI
I









. (21)

Eq. (21) factors the dynamic stiffness into a frequency-dependent matrix Ω and a frequency-independent
matrix P containing the system matrices. This approach allows to express Eq. (18) at different frequencies
using a single set of unknown variables. Eq. (21) is pre-multiplied by the identity prior to insertion into
Eq. (20) to facilitate vectorization:

A1vec (IPΩ) = y,

A1

(

Ω¦ ¹ I
)

vec(P) = y.
(22)
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Again, for brevity, the above equation is rewritten as:

A1A2vec(P) = y, where A2 ≜ Ω¦ ¹ I and vec(P) =









vec(MJ)
vec(CJ)
vec(DJ)
vec(KJ)









. (23)

Although Eq. (23) can be solved via LS, the solution may violate reciprocity of the system matrices. The
system matrices should therefore be symmetric, which can be enforced by expressing the vectorized matrices
as a product of a duplication matrix L and the unique variables [42], also known as half-vectorization:

vec(⋆) = L vech(⋆), (24)

where vech(⋆) denotes the half-vectorization of the square matrix ⋆, i.e. the vectorization of the lower-
triangular part of the matrix ⋆. Eq. (23) can therefore be written as:

A1A2Lpp = y ô Ap = y, (25)

where

Lp ≜









L

L

L

L









, p ≜









mJ

cJ

dJ

kJ









≜









vech(MJ)
vech(CJ)
vech(DJ)
vech(KJ)









, and A ≜ A1A2Lp. (26)

Both A and y are frequency dependent, while p is frequency independent. Therefore, Eq. (25) is stacked at
different frequencies:







A(É1)
...

A(ÉN )






p =







y(É1)
...

y(ÉN )






ô AΩp = yΩ, (27)

where ⋆Ω represents the column-stacked vectors or matrices ⋆ at frequencies in the set Ω = {É1 . . . ÉN}.
Both AΩ and yΩ are complex, while p is real, therefore, the real solution for p is found by splitting Eq. (27)
into real and imaginary components:

[

Re(AΩ)
Im(AΩ)

]

p =

[

Re(yΩ)
Im(yΩ)

]

. (28)

Solving Eq. (28) in a least-squares sense allows to identify the parameters of the joint with the reciprocity
of the system matrices taken into account. This approach performs joint parametrization directly based on
Eq. (16) and will be regarded as direct parametrization (DP) for the remainder of the paper. After solving
Eq. (28), the vectorized system matrices can be calculated:

vec(P) = Lpp. (29)

3. Modifying the established joint identification approach

3.1. Indirect joint parametrization

Alternatively, Eq. (16) can be used to calculate the frequency-dependent joint impedance ZJ, effectively
performing decoupling in the frequency domain:

ZJ =
(

YAJBBJ
f

¦
)+ (

YA|B −YAJB
)(

BJ
uY

A|B
)+

. (30)

The joint impedance matrix ZJ can be calculated directly using Eq. (30). Following Eq. (21), the joint
impedance can be parametrized, i.e. written in terms of the system matrices, and vectorized, taking into
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account the symmetry of the system matrices. Again, to account for varying amplitude ranges, a frequency-
dependent weighting matrix W is introduced, such that each row in WZJ has unit variance:

vec
(

WZJ
)

=
(

Ω¦ ¹W
)

Lpp. (31)

Denoting vec
(

WZJ
)

as y and
(

Ω¦ ¹W
)

Lp as A allows to write the joint identification equation exactly
as in (25):

Ap = y, where A ≜
(

Ω¦ ¹W
)

Lp and y ≜ vec
(

WZJ
)

. (32)

Again, joint parameters are solved for by stacking Eq. (32) at different frequencies and splitting the sys-
tem into real and imaginary components. This alternative joint parametrization approach relies on first
decoupling and subsequently parametrizing the joint, therefore, the approach will be regarded as indirect
parametrization (IP).

3.2. Enforcing rank-deficiency

Apart from the reciprocity of the system matrices, there are additional requirements, which the identified
joint may violate. Since the joint model should effectively couple the adjacent substructures, the joint itself
should have free boundary conditions. Therefore, the stiffness and the damping matrices should not oppose
any rigid-body motion of the joint, since only the inertial forces can oppose rigid-body motion. Applying
an arbitrary rigid-body displacement uJ

RB should therefore require no force [43]:

CJu̇J
RB = 0, (33a)

DJuJ
RB = 0, (33b)

KJuJ
RB = 0. (33c)

Any rigid-body displacement can be expressed as a superposition of the joint’s rigid-body modes. Defining
the rigid-body modes requires first defining the joint DoFs. A two-node joint model with six DoFs per node
is adopted, schematically shown in Fig. 1, where the two joint nodes are separated by L units of distance.

L

Figure 1: Definition of joint DoFs.

The set of joint DoFs uJ is expressed as:

uJ =

[

uJ
1

uJ
2

]

, where uJ
i =

[

uix uiy uiz ¹ix ¹iy ¹iz
]¦

, i ∈ {1, 2}. (34)

Assuming small displacements and considering the definition of joint DoFs in Eq. (34) and in Fig. 1, any
rigid-body displacement of the joint can be written as a superposition of the rigid-body modes2:

uJ
RB = URBqRB, (35)

2The rigid-body modes in URB are expressed such that they are easy to comprehend, although the selection of rigid-body
modes is not unique. Nevertheless, care should be taken to ensure the selected modes can describe all viable rigid-body motion.
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where

U¦
RB =





















1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0

0 −
L

2
0 1 0 0 0

L

2
0 1 0 0

L

2
0 0 0 1 0 −

L

2
0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1





















and qRB =

















qx
qy
qz
q¹x
q¹y
q¹z

















. (36)

Each row of U¦
RB represents a rigid-body mode, while the coordinates in qRB scale the rigid-body modes to

obtain the displacements. Applying Eq. (35) to Eqs. (33) reads:

CJURBq̇RB = 0 ∀ q̇RB, (37a)

DJURBqRB = 0 ∀ qRB, (37b)

KJURBqRB = 0 ∀ qRB. (37c)

Since Eqs. (37) are valid for any qRB, the column space of rigid-body modes URB must lie in the null space
of matrices CJ, DJ, and KJ:

CJURB = 0, DJURB = 0, KJURB = 0. (38)

The remainder of the derivation will be presented only for the stiffness matrix, however, all equations apply
to both damping matrices CJ and DJ as well. Pre-multiplying Eq. (38) by the identity I and performing
vectorization leads to:

(

U¦
RB ¹ I

)

vec(KJ) = 0. (39)

The symmetry of KJ is taken into consideration by applying Eq. (24):

(

U¦
RB ¹ I

)

Lvech(KJ) = 0 ô
(

U¦
RB ¹ I

)

LkJ = 0. (40)

All feasible solutions for cJ, dJ, and kJ must therefore span the null space of
(

U¦
RB ¹ I

)

L, i.e.:

kJ ∈ Null
((

U¦
RB ¹ I

)

L
)

. (41)

Let V denote the matrix containing all basis vectors of Null
((

U¦
RB ¹ I

)

L
)

in its columns. The solutions
for cJ, dJ, and kJ can therefore be expressed as a superposition of the null space basis vectors:

cJ = Vc̃J, dJ = Vd̃J, kJ = Vk̃J, where V ≜ Null
((

U¦
RB ¹ I

)

L
)

. (42)

Taking Eq. (42) into account, Eq. (25) can be rewritten as:

AVpp̃ = y ô Ãp̃ = y, (43)

where

Vp =









I

V

V

V









and p̃ =









mJ

c̃J

d̃J

k̃J









. (44)

Both y and A are frequency-dependent, while Vp and p̃ are frequency-independent. Eq. (43) can be written
at individual frequency lines, which can be gathered in a single equation:







A(É1)Vp

...
A(ÉN )Vp






p̃ =







y(É1)
...

y(ÉN )






ô ÃΩp̃ = yΩ, (45)
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Again, since p̃ is real, both ÃΩ and yΩ can be split into real and imaginary parts to obtain a real solution
for p̃:





Re
(

ÃΩ

)

Im
(

ÃΩ

)



 p̃ =

[

Re (yΩ)
Im (yΩ)

]

. (46)

Solving Eq. (46) in a least-squares sense allows to identify the parameters of the joint with both reciprocity
of the system matrices and free-boundary conditions taken into account. Finally, the vectorized system
matrices are calculated as:

vec(P) = LpVpp̃. (47)

Taking Eq. (42) into account will be referred to as rigid-body-mode (RBM) constraints and can be interpreted
as a generalization of the joint identification methods which use the linear springs formulation by including
cross coupling between the adjacent joint DoFs without violating the rank-deficiency of the stiffness and
damping matrices.

3.3. Sparse regression

Identifying the joint parameters is inherently subject to experimental errors, which pollute the identifi-
cation results. The LS procedure can therefore be prone to overfitting, as it can identify some parameters as
significant only to reduce the difference between the uncoupled and coupled response models. Experimen-
tal errors alter the discrepancy between the uncoupled and coupled states, while LS finds the best-fitting
joint parameters regardless of the experimental errors. Therefore, it can be beneficial to perform sparse
regression to eliminate some of the terms in the system matrices, which may be present due to inaccurate
measurements. This work considers LASSO as the sparse regression method of choice. Considering a system
of linear equations Xβ = y, the LASSO solution β̂ is found by solving Eq. (48):

β̂ = argmin
β

(

∥y–Xβ∥22 + ¼∥β∥1
)

, (48)

where ¼∥β∥1 is the penalty term responsible for variable selection, with ¼ determining the penalty strength.
Applying LASSO when RBM constraints are considered (Eq. (45)) may however not be beneficial, as the
terms in c̃J, d̃J and k̃J represent the coefficients for the superposition of columns in V, and not the terms
in the system matrices, as seen from Eq. (42). Since the aim is to promote sparsity of the system matrices,
LASSO should be applied directly to the terms in the system matrices in p (Eq. (26)). To make LASSO
compatible with RBM constraints, LASSO is utilized exclusively to perform variable selection (i.e. to promote
a sparse solution) in Eq. (25), similar to the application in [44]. The parameters eliminated by LASSO
are therefore removed from the identification procedure. RBM constraints are subsequently modified to
account for the eliminated parameters. By performing LASSO only for variable selection, application of
RBM constraints is permitted, allowing to enforce rank deficiency of the sparse joint model. A flowchart
describing the application of LASSO only for variable selection is provided in Fig. 2.
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1. Perform LASSO 2. Define sparse set of variables 3. Calculate least-squares

solution for sparse variables

Figure 2: Flowchart describing the use of LASSO to perform variable selection only. Sβ denotes the selection matrix, which
selects the sparse set of variables βs from the set of all variables β, and βo denotes the dense representation of the sparse
variables βs.

Applying LASSO to the set of all parameters p can however be problematic, as FRFs are sensitive
to damping only at frequencies in the vicinity of resonance peaks. Therefore, LASSO tends to remove a
majority of damping parameters, leading to underestimated joint damping. It is therefore beneficial to
search for a sparse solution only among the mass and stiffness parameters mJ and kJ. The columns of A
and terms in p in Eq. (25) can be rearranged as follows:

[

Amk Acd

]

[

pmk

pcd

]

= y, with pmk ≜

[

mJ

kJ

]

and pcd ≜

[

cJ

dJ

]

. (49)

Applying LASSO only to the subset pmk of all parameters is defined as:

p̂mk, p̂cd = argmin
pmk,pcd

(

∥y −Amkpmk −Acdpcd∥
2
2 + ¼∥pmk∥1

)

. (50)

The problem in Eq. (50) can be reformulated to an ordinary LASSO problem as in Eq. (48)3:

p̂mk = argmin
pmk

(

∥ỹ–Ãmkpmk∥
2
2 + ¼∥pmk∥1

)

, (51)

where
ỹ ≜ (I−Hcd)y, Ãmk ≜ (I−Hcd)Amk, and Hcd ≜ Acd

(

A¦
cdAcd

)−1
A¦

cd. (52)

Although solving Eq. (51) provides solutions for mJ and kJ, LASSO is only used as a sparsity indicator to
perform subset selection. Denoting the selected (nonzero) parameters as mJ

s and kJ
s , selection matrices Sm

and Sk are constructed such that:

mJ
s = Smm

J, (53a)

kJ
s = Skk

J. (53b)

Matrices Sm and Sk select the nonzero elements from the original variables mJ and kJ. The matrices are
constructed by taking the identity matrix and removing the rows corresponding to the nullified parameters.
Matrices Sm and Sk are semi-orthogonal, as SmS

¦
m = I and SkS

¦
k = I. Eqs. (53a) and (53b) are pre-

multiplied by S¦
m and S¦

k :

S¦
mm

J
s = S¦

mSmm
J, (54a)

S¦
k k

J
s = S¦

k Skk
J. (54b)

3The interested reader is referred to Appendix A, where the problem of LASSO applied to only a subset of all variables is
derived to a reformulated ordinary LASSO problem.
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Since Sm and Sk are semi-orthogonal4, the products S¦
mSm and S¦

k Sk represent the orthogonal projection
onto the row space of Sm and Sk, respectively. As the row spaces of these matrices do not contain any nonzero
terms corresponding to the parameters eliminated by LASSO, S¦

mSm and S¦
k Sk set these parameters in mJ

and kJ to zero via orthogonal projection and retain the nonzero terms unchanged, effectively sparsifying
mJ and kJ. Their sparse representations are denoted by mJ

o and kJ
o, respectively, which are calculated as:

mJ
o = S¦

mSmm
J = S¦

mm
J
s , (55a)

kJ
o = S¦

k Skk
J = S¦

k k
J
s . (55b)

The sparsity is accounted for by replacing mJ and kJ in Eq. (25) with S¦
mm

J
s and S¦

k k
J
s , respectively:

AS¦ps = y, (56)

where

S¦ ≜









S¦
m

I

I

S¦
k









and ps ≜









mJ
s

cJ

dJ

kJ
s









. (57)

After promoting sparsity of mJ and kJ, the rigid-body motion should be taken into consideration. Both
cJ and dJ remain dense, therefore, the transformation changes only for the stiffness parameters, rewriting
Eqs. (40) and (41) as:

(

U¦
RB ¹ I

)

LS¦
k k

J
s = 0 ô kJ

s ∈ Null
((

U¦
RB ¹ I

)

LS¦
k

)

. (58)

The matrix containing all basis vectors of Null
((

U¦
RB ¹ I

)

LS¦
k

)

in its columns is denoted as Vk, which
complies with the rigid-body motion and accounts for the symmetry and sparsity of KJ. Eq. (42) is adjusted
to account for the sparse stiffness parameters:

kJ
s = Vkk̃

J
s , where Vk ≜ Null

((

U¦
RB ¹ I

)

LS¦
k

)

. (59)

Inserting Eqs. (42) and (59) into Eq. (56) yields:

AS¦Vps
p̃s = y ô Ãsp̃s = y, (60)

where

Vps
=









I

V

V

Vk









and p̃s =









mJ
s

c̃J

d̃J

k̃J
s









. (61)

Again, Eq. (60) can be written at individual frequency lines and combined into a single equation:






A(É1)S
¦Vps

...
A(ÉN )S¦Vps






p̃s =







y(É1)
...

y(ÉN )






ô ÃsΩ p̃s = yΩ. (62)

Both ÃsΩ and yΩ are split into real and imaginary parts, allowing to calculate the real least-squares solution
of Eq. (62):

p̃s =





Re
(

ÃsΩ

)

Im
(

ÃsΩ

)





+
[

Re (yΩ)
Im (yΩ)

]

. (63)

Finally, the vectorized system matrices can be calculated:

vec(P) = LpS
¦Vps

p̃s. (64)

4Matrices Sm and Sk are semi-orthogonal, as they are not square, however, SmS¦
m = I and SkS

¦

k
= I.
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3.4. Excitation direction updating

Experimentally obtaining FRFs is inherently subject to errors. Consistent locations and directions of
excitations and measured responses are especially important when applying the VPT to model the interface,
as the location and direction errors propagate through the transformation [41]. To understand the influence
of locations and directions of excitation and response DoFs, the following subsection briefly explains the
basic formulation of the VPT.

3.4.1. Virtual point transformation

Performing coupling and decoupling operations in DS relies on the ability to establish the constraints
of interface displacement compatibility and interface force equilibrium. A prerequisite to establishing both
types of constraints are collocated DoFs on the adjacent sides of the interface, which is difficult to achieve
in an experimental environment. Replicating excitation locations can be challenging when the interface is
not easily accessible for measurements. Even if measurement locations could be replicated, directly coupling
too many interface DoFs can result in unwanted stiffening of the interface, leading to an ill-conditioned
substructuring problem and spurious peaks in the estimated vibration response [45].

The motion at the interface can often be sufficiently described as a superposition of selected interface
deformation modes (IDMs). For point-like connections, where the interface locally exhibits rigid behavior,
six rigid-body IDMs are sufficient to approximate arbitrary interface motion. The VPT allows to transform
the translational DoFs measured in the proximity of the interface to a six-DoF virtual point (VP). Its
location can be chosen arbitrarily, therefore, collocated DoFs on either side of the interface can be easily
obtained [19].

The derivation of VPT is facilitated by Fig. 3. The VPT can be understood as a reduction of measured
DoFs by means of geometric transformation, which is applied separately to excitation and response DoFs.
The following derivation will only consider rigid-body IDMs, however, flexible interface motion can also be

accounted for [46]. Assuming the VP responses qVP =
[

qx qy qz q¹x q¹y q¹z
]¦

are known, a single
measured response uh can be expressed as:

uh =
[

eh
¦ (

rh × eh
)¦

]

qVP + µh ô uh = Rh
uq

VP + µh, (65)

where eh and rh are respectively the direction and relative location vectors of displacement uh, as illustrated
by Fig. 3, and µh accounts for any discrepancy between the transformed VP response Rh

uq
VP and the

measured response uh. All measured responses u are expressed in terms of the VP responses qVP as:

u = Ruq
VP + µ, (66)

where Ru is the IDM matrix obtained by vertically stacking Rh
u and µ accounts for any residual motion in

u outside the column space of Ru. The number of VP responses in qVP should not exceed the number of
measured responses in u to ensure the VP responses are mutually independent. In practice, Eq. (66) should
be overdetermined to reduce the effect of measurement errors. The least-squares solution to Eq. (66) can
be found by minimizing µ¦µ:

qVP = Tuu, where Tu =
(

R¦
u Ru

)−1
R¦

u . (67)

The matrix Tu is known as the left inverse of Ru, solving Eq. (66) in a least-squares sense.

In contrast to responses, the VP loads mVP =
[

mx my mz m¹x m¹y m¹z

]¦
represent the resul-

tant force due to the applied forces f . If a single force fk is applied, the VP loads are calculated as:

mVP =

[

ek

rk × ek

]

fk ô mVP = Rk
f

¦
fk, (68)

where ek and rk are respectively the direction and relative location vectors of excitation fk, as illustrated

by Fig. 3. The VP loads due to all applied forces are calculated by horizontally stacking Rk
f

¦
:

mVP = R¦
f f . (69)
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(a) (b)

Figure 3: Representation of the interface as a virtual point: (a) interface excitation & response measurements, (b) trans-
formation to VP DoFs. Blue ( ), red ( ), and green ( ) colors indicate the response, excitation, and VP DoFs,
respectively.

Applying the VPT to excitations requires expressing the applied forces f in terms of the VP loads mVP. To
describe an arbitrary VP load, the number of forces in f should at least match the number of VP loads. By
ensuring the number of forces in f exceeds the number of VP loads, Eq. (69) is underdetermined, reducing
the effects of measurement errors. The forces f in Eq. (3) should be replaced by the least-norm solution of
Eq. (69), denoted by f̂ , to ensure the interface is excited such that the loads not described by the IDMs in
R¦

f are minimized:

f̂ = T¦
f m

VP, where T¦
f = Rf

(

R¦
f Rf

)−1
. (70)

The matrix T¦
f is known as the right-inverse of R¦

f , solving Eq. (69) in a least-norm sense. Finally, the
measured admittance Y is transformed to VP admittance Yqm by substituting the measured DoFs with VP
DoFs using Eqs. (67) and (70), as described in [19]:

u = Yf ⇒ qVP = TuYT¦
f m

VP = Yqmm
VP. (71)

A transformation from VP DoFs to the measured DoFs can also be performed, which calculates the filtered
admittance:

û = RuYqmR
¦
f f̂ = RuTuYT¦

f R
¦
f f̂ = FuYFf f̂ = Ŷf̂ , (72)

where Fu and Ff are the response and excitation projection matrices filtering out any motion from Y which
cannot be described by the selected IDMs, resulting in the filtered admittance matrix Ŷ.

Consistent VPT requires both selecting the appropriate IDMs, as well as ensuring the individual terms
in the IDM matrices are consistent with the true locations and directions of response and excitation DoFs.
Assuming the selected IDMs are sufficient to fully describe the interface motion, the VPT consistency
is predominantly subject to the consistency of excitation and response locations and directions. If the
VPT is used to model the interface DoFs of the joint, the joint model accuracy is influenced by the VPT
consistency, which is in turn related to the locations and directions of the measured excitation and response
DoFs. By carefully mounting sensors on the structure, the main contribution to uncertainty in the VPT can
be attributed to excitation location and direction errors. The consistency of force DoFs may be improved
by fine-tuning the locations and directions in the IDM matrices, as discussed in [47]. In case of a large
enough interface, the main source of uncertainty lies in the excitation direction inaccuracy, as the relative
location error decreases with distance from the VP. Furthermore, all VP loads are influenced by the excitation
directions, while only the rotational VP loads are influenced by the excitation locations. Therefore, excitation
direction uncertainty is arguably more influential.

An optimization approach for updating excitation and response locations and directions was proposed in
[48], where a cost function was defined by considering VP rigidness, reciprocity, and passivity. In this work,
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a similar idea is explored, focusing only on updating excitation directions. Instead of a cost function-based
optimization procedure, an iterative updating approach is proposed, relying on enforcing VP reciprocity
and calculating the excitation directions which minimize the difference between the measured and filtered
admittance. In the following, the proposed algorithm for updating excitation directions is presented.

3.4.2. Updating excitation directions

Inconsistent excitation directions lead to errors in VPT due to the excitation directions considered in the
VPT deviating from the true directions. Regardless of appropriately selecting IDMs, this leads to increased
discrepancy between the measured and filtered FRFs. The aim of excitation direction updating is to find the
true excitation directions, thereby decreasing the filtering effect. The updating procedure relies on iteratively
applying the VPT, enforcing VP admittance reciprocity, and applying an inverse transformation with the
excitation directions considered as unknown variables within the inverse transformation. This procedure is
briefly illustrated in Fig. 4, followed by a detailed description of the updating algorithm.

initial

impact

directions

VPT

enforcing

reciprocity

updated

impact

directions

Figure 4: Excitation direction updating algorithm.

To update excitation directions, each column Rk
f

¦
in R¦

f is written as a transformation of excitation
direction ek:

Rk
f

¦
=

[

ek

rk × ek

]

=

















1 0 0
0 1 0
0 0 1
0 −rkz rky
rkz 0 −rkx
−rky rkx 0





















ekx
eky
ekz



 = R
k

f

¦

ek. (73)

The updating of excitation directions is conducted by iteratively performing the following sequence of steps:

1. Construct the matrix R¦
f,i using the directions eki from the ith iteration.

2. Calculate the VP admittance:
Yqm,i = R+

u YR¦
f,i

+
. (74)

3. Enforce reciprocity by calculating the symmetric part of the VP admittance:

Y
sym
qm,i =

1

2

(

Yqm,i +Y¦
qm,i

)

. (75)

4. Express each column of the filtered admittance using the symmetric matrix Y
sym
qm,i and excitation

direction eki and denote the difference between each column of the measured and filtered admittance
matrices as δki+1:

δki+1 = RuY
sym
qm,iR

k

f

¦

eki+1 − yk, (76)
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where yk denotes the kth column of the measured admittance matrix Y.
5. Eq. (76) can be written for all available frequencies in the range where the selected IDMs are considered

to be dominant. In addition, Eq. (76) can be pre-multiplied by a frequency-dependent weighting matrix
W(É) to make better use of the available information:









...
W(Éj)δ

k
i+1(Éj)
...









=











...

W(Éj)RuY
sym
qm,i(Éj)R

k

f

¦

...











eki+1 −









...
W(Éj)y

k(Éj)
...









,

ô

δki+1 = Ak
i e

k
i+1 − yk.

(77)

6. Split δki+1, A
k
i , and yk into real and imaginary components and calculate the (weighted) least-squares

solution of Eq. (77) for each impact direction eki+1:

ẽki+1 =

[

Re
(

Ak
i

)

Im
(

Ak
i

)

]+ [

Re
(

yk
)

Im
(

yk
)

]

. (78)

7. Normalize the least-squares solution for each excitation direction:

eki+1 = ẽki+1/∥ẽ
k
i+1∥2. (79)

8. Repeat steps 1–7 until a convergence criterion is satisfied:

1−
1

N

N
∑

k=1

(eki )
¦eki+1 f ε. (80)

In step 3, the symmetric part of Yqm,i is calculated, which facilitates finding the excitation directions that
reduce the projection error of the symmetric matrix. Without enforcing the symmetry of Yqm,i, the solution
for eki+1 minimizes only the projection error.

The excitation direction vectors in the VPT are assumed to be unit vectors, however, the least-squares
method does not guarantee the solution to lie on the unit sphere. Eq. (77) could be solved by means
of constrained optimization by defining the constraint ∥eki+1∥2 = 1, however, the least-squares approach
combined with normalization achieves sufficient accuracy, therefore, alternative approaches were not tested.
Lastly, a frequency-dependent weighting matrix W(É) can be used to ensure the system of equations in
(77) is not dominated by the terms at resonant frequencies due to the increased response amplitudes. In
addition, the amplitudes of response at different DoFs may differ in orders of magnitude, which can also be
accounted for by W(É).

A similar procedure was deduced for updating excitation locations, however, the updating algorithm
had difficulties achieving converging results and is therefore not included in this work. Nevertheless, the
excitation direction updating algorithm was able to successfully find the true excitation directions in nu-
merical examples of noisy FRFs with both excitation direction and location uncertainty, as will be shown
in Section 4. In the numerical study, the true excitation directions are known, allowing to evaluate the
accuracy of the updated excitation directions. The chosen metric to describe the accuracy of direction e⋆
with respect to the true direction etrue is their dot product:

faccuracy(e⋆, etrue) = e¦⋆ etrue. (81)

As both direction vectors are unit vectors, their dot product approaches 1 with increasing accuracy. Lastly,
to assess the similarity of two FRFs, the coherence criterion is defined:

coh(Y, Y ref) =
(Y + Y ref)(Ȳ + Ȳ ref)

2(Y Ȳ + Y ref Ȳ ref)
, (82)

where ⋆̄ denotes the complex conjugate of ⋆.
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4. Numerical study

Both the numerical and experimental studies are conducted on substructures of similar geometry. A
resilient joint type is considered in both studies. Two assembled structures are assessed, namely the CJC
and AJB structures. The CJC (cross-joint-cross) structure serves as a test rig for joint identification. The
top and bottom cross structures have conforming geometry defined by several inclined planes to improve
the channel and impact consistency.5 The joint is first validated on the CJC structure, here referred to
as onboard validation, i.e. validation is performed on the same set of substructures as the identification.
Subsequently, validation is performed on the AJB structure, where the substructures A and B are connected
by two identical joints. This will be referred to as cross validation, as the validation is performed on a set
of substructures different from the substructures in the identification procedure.

The substructures comprising the CJC structure are shown in Fig. 5, while Fig. 6 depicts the substruc-
tures comprising the AJB structure. The red arrows represent excitations, while the transparent boxes
represent triaxial accelerometers. Each of the two green spheres in Fig. 5b represents a single VP with
six DoFs. Two VPs are used to construct the twelve joint DoFs. Applying the VPT, FRF synthesis, and
visualization were facilitated by the open-source Python package pyFBS [49].

(a) (b) (c)

Figure 5: Identification and onboard validation substructures within numerical joint identification: (a) C, (b) J, (c) CJC.

(a) (b) (c)

Figure 6: Cross validation substructures within numerical joint identification: (a) A, (b) B, (c) AJB.

The joint identification workflow is depicted in Fig. 7. Four modifications to the existing joint iden-
tification approaches are tested: direct or indirect parametrization, consideration of the joint rigid-body
modes, least-squares or sparse regression, and original or updated excitation directions. As these methods
are mutually independent, all possible combinations are tested, resulting in 16 distinct joint identification
approaches. Both onboard and cross validation are performed to assess each approach.

5If the cross-coupling between the VP DoFs is low and excitation is performed in the direction of a VP DoF, some VP
DoFs are expected to exhibit low response amplitudes, resulting in a low signal-to-noise ratio. Furthermore, a small deviation
in excitation direction may significantly affect these responses, resulting in low impact consistency. Therefore, it is beneficial
to deliberately excite as many VP DoFs as possible by choosing excitation directions not parallel to the VP DoFs. Similar
reasoning can be applied to the positioning of measured responses.
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3.

Parametrization

Direct Indirect

Figure 7: Joint identification workflow.

4.1. Excitation direction updating validation

The excitation directions and locations considered for the VPT in the numerical study were slightly
perturbed to replicate a realistic measurement environment. A random in-plane location error was added
with a uniform distribution within a circle of 4 mm radius. Similarly, excitation directions were offset from
the original directions by a direction error with uniform distribution on a spherical cap bounded by the polar
angle (offset from the normal direction) of 15°. Random Gaussian noise with standard deviation of 0.02
m s−2/N was added to both the real and imaginary parts of FRFs throughout the entire frequency range to
approximate measurement noise.

A comparison of VP reciprocity before and after updating excitation directions is shown in Fig. 8,
separately for substructure C and assembled CJC. The erroneous (non-updated) and updated directions
are denoted as ERR and UP, respectively. An increase in reciprocity is observed after updating, which
is promoted by the updating procedure, where VP reciprocity is enforced within each updating iteration.
Since true excitation directions and locations are available in the numerical study, individual VP FRFs,
obtained with erroneous and updated excitation directions, can also be compared to the VP FRFs with true
excitation directions and locations. This is shown in Fig. 9, where ref., ERR, and UP refer to the VP FRFs
calculated by considering the true, erroneous, and updated excitation directions, respectively. It can be
seen from Fig. 9 that updating excitation directions improves the accuracy of the VP FRFs, which should
improve the joint identification accuracy.

The accuracy of the excitation direction updating is assessed by evaluating the accuracy of the erroneous
and updated excitation directions using Eq. (81), as the true excitation directions are also known. The
accuracy of all excitations on both C and CJC structures are shown in Fig. 10. All excitation directions are
significantly improved after updating.
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Figure 8: Reciprocity of the VP admittance matrix: (a) C, (b) CJC - upper VP.
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Figure 9: VP FRFs considering true, erroneous, and updated excitation directions: (a) substructure C, (b) structure CJC.
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Figure 10: Accuracy of erroneous and updated excitation directions: (a) C, (b) CJC.
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4.2. Onboard validation

The individual identification approaches are first compared within onboard validation, where the dy-
namics of the CJC assembly, used for joint identification, are estimated by coupling the identified joint with
the adjacent C substructures. In addition to the 16 parametrization approaches, joint identification is also
performed in the frequency domain by applying Eq. (30) to obtain the joint’s dynamic stiffness matrix. The
frequency domain approach is denoted as FD, which directly identifies the dynamic stiffness matrix without
subsequent parametrization.

The effect of RBM constraints is shown in Fig. 11. Neglecting RBM constraints results in a poor accuracy
in the low frequency range (below 50 Hz), while no significant difference was observed at higher frequencies.
This effect was consistently observed for all approaches, therefore, for the sake of brevity, the remaining
results all comply with RBM constraints.
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Figure 11: CJC FRFs obtained using indirect parametrization and erroneous excitation directions: (a) no RBM considerations,
(b) joint matrices constrained by RBMs.

By considering RBM constraints, only eight distinct identification approaches are left, which vary in
the regression approach (LS or LASSO), parametrization (DP or IP), and excitation directions (ERR or
UP). Onboard validation results for all eight variants are shown in Fig. 12. All approaches are compared
with the reference (true assembly) FRFs. The assembly FRFs are also estimated using the FD joint. Two
distinct FD joint models are identified by individually considering the erroneous and the updated excitation
directions. This allows to compare the parametrized joints with the FD joints while taking the excitation
direction updating into account.

This paper aims to explore and compare different joint parametrization approaches, while the FD ap-
proach is not parametrized and characterizes the joint’s properties per frequency. Therefore, it is not
expected that the parametrization approaches would outperform FD consistency, especially if the joint’s
properties are strongly frequency dependent, as the parametrization assumes frequency-independent system
matrices. However, an important advantage of a parametrized joint model is the efficient consideration of
resilient connections in a simulation environment. This can be achieved by establishing connections between
individual numerical models using the parametrized joint models. In addition, parametrizing the joint can
reduce the effects of noise due to the overdetermination with respect to frequency. Therefore, the FD ap-
proach is included in the comparison to assess how well the parametrized models are able to describe the
joint dynamics compared to the less restrictive FD model.

Each graph in Fig. 12 includes the results for LS and LASSO. The LS joint models are obtained by
directly solving the joint identification equations in a least-squares sense, without any regularization of the
matrices being inverted. On the contrary, the LASSO joint models have an additional hyperparameter
λ determining the penalty strength. Throughout this paper, the value of λ was determined by varying
the parameter in conjunction with five-fold cross validation to find the value λ with the lowest validation
error [40]. By varying the parametrization (DP or IP) and excitation direction updating (ERR or UP),
four graphs are obtained. When DP is considered, there is a larger discrepancy between LS and LASSO
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solutions. With IP, the LS and LASSO solutions largely overlap. When considering IP, both LS and LASSO
are also significantly more consistent with the FD solution. In contrast, DP solutions are less accurate in
the low-frequency range. The frequency-dependent joint model is able to accurately reproduce the assembly
dynamics within the onboard validation when the updated excitation directions are considered. It can also
be observed that updating excitation directions improves the parametrized joint models. The most accurate
parametrized joint model was obtained by combining RBM constraints, LS, IP, and excitation direction
updating.
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Figure 12: : Estimated CJC FRFs with RBM constraints: (a) DP without direction updating, (b) DP with direction updating,
(c) IP without direction updating, (d) IP with direction updating.

The effect of LASSO is significantly more pronounced with DP compared to IP. The improvement of joint
model accuracy is more pronounced with off-diagonal FRFs, i.e. FRFs corresponding to different response
and excitation directions or locations, as shown in Fig. 13(a). Fig. 13(b) illustrates how LASSO affects the
mass and stiffness matrices, where the nonzero elements of the matrices are represented by black tiles.
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Figure 13: Joint identification with LASSO: (a) comparison of LS and LASSO on estimated off-diagonal FRFs, (b) sparsity
promoting effect of LASSO on the identified mass and stiffness matrices.

The identified mass matrix is expected to be positive definite, while the damping and stiffness matrices
ought to be positive semi-definite for an unsupported joint, since the damping and stiffness matrices do
not oppose any rigid-body motion [43]. Inconsistencies regarding positive (semi-)definiteness are revealed
by calculating the eigenvalues of the identified matrices. Positive definite matrices have strictly positive
eigenvalues, while the eigenvalues of positive semi-definite matrices are non-negative. The eigenvalues of
all matrices for all joint identification approaches are shown in Fig. 14. The identified mass matrices
have negative eigenvalues regardless of the identification approach. None of the approaches incorporate
the positive (semi-)definiteness constraint, therefore, non-positive eigenvalues arise in the mass matrices
to better compensate for the discrepancy between the substructures in the uncoupled and coupled state.
Both damping matrices have six zero eigenvalues under RBM constraints. RBM constraints also reduce
the number of negative eigenvalues for both damping matrices. Similarly, the stiffness matrix has six
zero eigenvalues under RBM constraints, with the remaining eigenvalues strictly positive. Therefore, RBM
constraints provide a more physically consistent approach to joint identification without explicitly enforcing
positive semi-definiteness of the damping and stiffness matrices. The remaining negative eigenvalues of
the damping matrices may be present due to the FRFs being sensitive to damping only near resonance
frequencies. Therefore, future studies could focus on selection of frequencies for joint identification, which
may constrain the damping matrices to comply with positive semi-definiteness.

4.3. Cross validation

The main utility in performing onboard validation is to validate the implementation of the identification
methods. Some identification approaches may be subject to overfitting, therefore, it is recommended to
assess the accuracy in a cross validation study. However, it is worth noting that the identification problem is
highly overdetermined due to the parametrization, therefore, issues associated with overfitting are expected
to be less severe and onboard validation can serve as an initial assessment tool.

Cross validation is performed by coupling the individual joint models with substructures A and B to
estimate the AJB FRFs, where A and B are connected by two joints (Fig. 6). Cross validation results are
shown in Fig. 15. It was again observed that RBM constraints improve the accuracy at low frequencies
without affecting the higher-frequency range, while neglecting RBMs resulted in a similar deviation at low
frequencies, as observed in the onboard validation. Therefore, all results presented in Fig. 15 take RBM
constraints into consideration. Consistent with the onboard validation, the effect of LASSO is more pro-
nounced with DP, while IP yields similar results for both LS and LASSO. Furthermore, updating excitation
directions noticeably improves the identification accuracy, which can be more clearly observed compared to
the onboard validation.6 Again, the highest accuracy is achieved by considering RBM constraints, updated

6Onboard validation is less sensitive to measurement errors, as the decoupled and subsequently coupled substructure models
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Figure 14: Effect of RBM constraints on eigenvalues of the joint’s system matrices in the numerical study.

excitation directions, and IP, with no significant differences between the LS and LASSO solutions. Com-
paring the parametrized joint models to the FD model, the noise-filtering property of the parametrization
approaches can be observed. Due to the overdetermination with respect to frequency, the effects of noise
are significantly reduced.

are exactly the same. Although an erroneous joint model may be obtained in the identification process, the effect of these errors
are diminished by coupling the same erroneous substructure models. In contrast, cross validation is performed by coupling
different substructure models, therefore, the errors compound and are more pronounced in the validation step.
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Figure 15: Estimated AJB FRFs with RBM constraints: (a) DP without direction updating, (b) DP with direction updating,
(c) IP without direction updating, (d) IP with direction updating.

In line with the onboard validation, the improvement of the LASSO solution compared to LS can be most
notably observed on the estimated off-diagonal FRFs with DP. A comparison of LS and LASSO solutions
for both DP and IP is shown in Fig. 16. Compared to LS, LASSO is able to achieve a higher accuracy with
DP, while the difference between LS and LASSO is negligible with IP.
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Figure 16: Comparison of LS and LASSO on estimated off-diagonal FRFs with updated excitation directions: (a) DP, (b) IP.

To further validate the proposed modifications to the joint identification procedure, an alternative as-
sembly depicted in Fig. 17, denoted as AJB, was considered for the joint identification, consisting of the
A and B substructures connected by a single joint. First, the AJB structure was used to isolate the joint
using the proposed parametrization approaches. An additional cross validation was performed by coupling
the A and B substructures with the identified joint at the two connection points of each substructure. This
allows to verify the proposed approaches are independent of the substructures connected by the joint in the
identification stage. Since excitation direction updating does not directly alter the identification procedure,
only true excitation directions were considered in the alternative joint identification. The effects of RBM
constraints, LASSO, and IP on the additional cross validation are shown in Fig. 18. Similar to the previous
cross validation, LASSO significantly improves results when applied to DP, while IP yields similar results
for both LS and LASSO. In all cases, RBM constraints improve the consistency of the estimated assembly
dynamics at low frequencies.

Alternative joint identification
Additional cross validation

J

Figure 17: Joint identification on the alternative AJB assembly and subsequent cross validation.
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Figure 18: : Estimated AJB FRFs based on the joint identified from the AJB assembly: (a) DP without RBM constraints, (b)
DP with RBM constraints, (c) IP without RBM constraints, (d) IP with RBM constraints.

5. Experimental study

The numerical study was designed to resemble the upcoming experimental study to capture any sub-
structuring or identification related issues. The substructures in the experimental study were of similar
geometry. Substructures involved in the joint identification procedure are shown in Fig. 19. Both upper and
lower cross substructures were equipped with four triaxial accelerometers, and twelve excitation locations
were distributed on each cross. The measured substructures were suspended by elastic bungee cords to
approximate free boundary conditions.

(a) (b) (c) (d)

Figure 19: Identification and onboard validation substructures within experimental joint identification: (a) C, (b) J, (c) CJC
(side view), (d) CJC (top view).

Substructures involved in the experimental cross validation are shown in Fig. 20. In the assembled
configuration, the substructures A and B are physically connected by two joints. Threaded plates on both
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sides of the rubber mounts allowed to connect the individual substructures using bolts. The interface of
each substructure is modeled using two six-DoF virtual points. To facilitate excitation of the substructures
in different directions, auxiliary blocks were mounted to the substructures. Three triaxial accelerometers
and three auxiliary blocks were mounted in the proximity of each VP. Three impacts were located on each
auxiliary block for a total of nine impacts per VP. These substructures were also suspended by bungee cords
to approximate free boundary conditions. Three additional excitation locations and a triaxial accelerometer
were placed away from the interface on each substructure to compare the true and estimated FRFs.

(a) (b) (c)

Figure 20: Cross validation substructures within experimental joint identification: (a) A, (b) B, (c) AJB.

5.1. Validation of the joint model

Due to the absence of direct joint impedance measurements, the impedances obtained by different
parametrization approaches can be compared to the FD impedance. Fig. 21 compares the driving-point
impedances of the u1z DoF with respect to Fig. 1. For brevity, the impedances are shown only for RBM
constraints and updated excitation directions. As observed in the numerical study, the discrepancy between
LS and LASSO is larger with DP and negligible with IP. Parametrization of the joint model further reduces
the effect of noise compared to the FD approach. Comparing DP and IP regarding joint impedance, IP
aligns more closely with FD.

10−1

101

103

|Z
|[
N
/
m

s−
2
]

DP & UP

FD LS LASSO

0 200 400 600 800 1000 1200

f [Hz]

-π

0

π

∠
Z
[r
a
d
]

(a)

10−1

101

103

|Z
|[
N
/
m

s−
2
]

IP & UP

FD LS LASSO

0 200 400 600 800 1000 1200

f [Hz]

-π

0

π

∠
Z
[r
a
d
]

(b)

Figure 21: Joint impedance obtained by considering RBM constraints and updated excitation directions: (a) DP, (b) IP.

In line with the numerical study, the eigenvalues of the joint’s system matrices were also calculated in
the experimental study, as shown in Fig. 22. Again, negative eigenvalues are present in the mass matrix
regardless of the approach. Under RBM constraints, damping matrices exhibit significantly fewer negative
eigenvalues and six zero eigenvalues. Stiffness matrices are again strictly positive semi-definite under RBM
constraints.

27



0 1 2 3 4 5 6 7 8 9 10 11
−100

−10−3
−10−6
−10−9

0
10−9
10−6
10−3
100

λ
i

λi(M
J)

RBM×

0 1 2 3 4 5 6 7 8 9 10 11
−100

−10−3
−10−6
−10−9

0
10−9
10−6
10−3
100

λi(M
J)

RBMX

0 1 2 3 4 5 6 7 8 9 10 11

−103
−100

−10−3
−10−6

0
10−6
10−3
100
103

λ
i

λi(C
J)

0 1 2 3 4 5 6 7 8 9 10 11
−103
−100

−10−3
−10−6

0
10−6
10−3
100
103

λi(C
J)

0 1 2 3 4 5 6 7 8 9 10 11

−106
−103
−100

−10−3
−10−6

0
10−6
10−3
100
103
106

λ
i

λi(D
J)

0 1 2 3 4 5 6 7 8 9 10 11

−106
−103
−100

−10−3
−10−6

0
10−6
10−3
100
103
106

λi(D
J)

0 1 2 3 4 5 6 7 8 9 10 11

i

−107
−103

−10−1

−10−5
0

10−5

10−1

103
107

λ
i

λi(K
J)

0 1 2 3 4 5 6 7 8 9 10 11

i

−107
−103

−10−1

−10−5

0
10−5

10−1

103
107

λi(K
J)

LS, DP, ERR

LS, DP, UP

LS, IP, ERR

LS, IP, UP

LASSO, DP, ERR

LASSO, DP, UP

LASSO, IP, ERR

LASSO, IP, UP

Figure 22: Effect of RBM constraints on eigenvalues of the joint’s system matrices in the experimental study.

5.2. Cross validation

For the sake of brevity, only cross validation results are presented in the experimental study, although
similar conclusions could be drawn from onboard validation. Cross validation results, where the FRFs of the
AJB assembly are estimated, are shown in Fig. 23. Only the models which consider RBM constraints are
compared, as the accuracy at low frequencies was improved without affecting the higher-frequency range.
Compared to DP, the results obtained by IP align better with the FD model. Furthermore, updating
excitation directions consistently improved the model accuracy, regardless of the specific approach. Overall,
the highest accuracy was achieved by combining RBM constraints, LS, IP, and excitation direction updating.
As is the case with the numerical study, LASSO was able to achieve the highest accuracy improvement in
the case of DP and non-updated excitation directions. Similar conclusions can be drawn from Fig. 24, where
the coherence (Eq. (82)) of FRFs in Fig. 23 with respect to the measured (reference) FRF is shown in a
form of a bar chart.

Promoting a sparse solution within the joint identification procedure leads to an improved accuracy of
DP with non-updated excitation directions. Future studies focusing on applying sparse regression methods
may be able to further improve the overall accuracy for all models, or at least for the IP approach. The
ability of LASSO to improve the accuracy of DP & ERR model may be attributed to neglecting a significant
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number of the off-diagonal terms in the joint’s mass and stiffness matrices. These terms are nonzero when
performing LS, however, their values may compensate for the errors in the excitation directions. As these
errors are diminished by updating excitation directions, neglecting the off-diagonal terms of the mass and
stiffness matrices does not reflect an improvement in joint accuracy.
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Figure 23: Estimated AJB FRFs with RBM constraints: (a) DP without direction updating, (b) DP with direction updating,
(c) IP without direction updating, (d) IP with direction updating.

29



F
B
S

D
P
&
E
R
R

D
P
&
U
P

IP
&
E
R
R

IP
&
U
P

0.70

0.75

0.80

0.85

0.90

ERR UP LS LASSO

Figure 24: Average coherence of the estimated AJB FRFs with respect to the measured (reference) AJB FRFs.

6. Conclusions

Performing joint identification in the form of model parametrization is often required for the purposes
of subsequent numerical simulations, therefore, obtaining a valid joint model is essential. A reformulation
of the joint identification approach described in [8] is presented, inspired by the LM-FBS derivation, along
with four modifications to the identification approach:

1. IP - indirect parametrization modifies the existing parametrization procedure by first obtaining the
joint’s dynamic stiffness matrix, followed by the parametrization.

2. RBM constraints – the twelve-DoF joint model considers free boundary conditions, therefore, the
damping and stiffness matrices should require no force for rigid-body motion.

3. LASSO - promoting sparsity in the joint’s system matrices may remove terms sensitive to measurement
errors.

4. Excitation direction updating - when modeling the interface using the VPT, the errors in excitation di-
rections can significantly decrease the VPT accuracy. Updating the excitation directions may therefore
improve the joint identification accuracy.

All of the above approaches were tested with the aim of improving the joint model accuracy. Their application
is mutually independent, therefore, 16 distinct identification approaches were considered by accounting for
all possible combinations. Considering the joint RBMs for obtaining the stiffness and damping matrices
improved the joint model accuracy at low frequencies regardless of the specific approach. In addition, the
stiffness matrices become strictly positive semi-definite under RBM constrains, while the number of negative
eigenvalues is reduced for both damping matrices. Performing excitation direction updating improved the
accuracy of the identified joint in both the numerical and experimental studies. Similarly, IP reflected in
increased joint model accuracy. The highest accuracy was achieved by combining RBM constraints and
IP with excitation direction updating, where LS outperformed LASSO. The parametrization approaches
were also compared to the less restrictive frequency-dependent joint identification to assess their capacity to
describe the joint dynamics. The parametrized models were consistent with the FD model, while reducing
the effect of noise.

It is worth noting that LASSO was able to outperform LS when combining DP with non-updated
excitation directions. Increased accuracy due to neglected terms within the joint’s mass and stiffness matrices
may be attributed to the erroneous excitation directions. By updating excitation directions, the main source
of error is accounted for, leading to LASSO no longer reflecting an increase in joint model accuracy. Future
work may further investigate the application of LASSO or alternative sparse regression approaches with the
aim of improving joint model’s accuracy by neglecting the terms sensitive to experimental errors.

Additional improvements may be achieved by forming a criterion for the selection of frequencies consid-
ered for the joint parametrization, similar to [14]. Since FRFs are most sensitive to the damping parameters
only near the resonance frequencies, LASSO promotes the sparsity of damping matrices to the point of
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their removal when a broad frequency range is considered. Therefore, LASSO was applied to promote spar-
sity only for mass and stiffness matrices. Additional attention concerning the selected frequencies for the
parametrization may allow for a sparsity promoting approach to identify the damping matrices without their
complete removal.
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Appendix A. Applying LASSO to a subset of variables

The problem of applying LASSO regression to only a subset of all variables is formulated as:

p̂mk, p̂cd = argmin
pmk,pcd

(

∥y −Amkpmk −Acdpcd∥
2
2 + λ∥pmk∥1

)

, (A.1)

where the penalized variables are denoted as pmk and the non-penalized variables are pcd. By expanding
the squared 2-norm in Eq. (A.1) and writing the right-hand side as a function f(pmk,pcd) to be minimized,
the following is obtained:

f(pmk,pcd) = (y −Amkpmk −Acdpcd)
¦
(y −Amkpmk −Acdpcd) + λ∥pmk∥1,

=y
¦
y + p

¦

mkA
¦

mkAmkpmk + p
¦

cdA
¦

cdAcdpcd

− 2p¦

mkA
¦

mky − 2p¦

cdA
¦

cdy + 2p¦

cdA
¦

cdAmkpmk.

(A.2)

The minimum of f can be found at pcd = p̂cd and pmk = p̂mk. The value of p̂cd can be expressed with pmk

by setting the gradient of f with respect to pcd to zero:

∇pcd
f(pmk, p̂cd) = 0,

2A¦

cdAcdp̂cd − 2A¦

cdy + 2A¦

cdAmkpmk = 0,

A¦

cdAcdp̂cd = A¦

cdy −A¦

cdAmkpmk,

p̂cd =
(

A¦

cdAcd

)−1
A¦

cdy −
(

A¦

cdAcd

)−1
A¦

cdAmkpmk.

(A.3)

Replacing pcd in Eq. (A.2) with p̂cd from Eq. (A.3) eliminates the dependency of f on pcd by implicitly
accounting for the zero-gradient requirement with respect to pcd:

f(pmk) =
∥

∥

∥
y −Amkpmk −Acd

(

(

A¦

cdAcd

)−1
A¦

cdy −
(

A¦

cdAcd

)−1
A¦

cdAmkpmk

)∥

∥

∥

2

2
+ λ∥pmk∥1. (A.4)
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For brevity, the projection matrix of Acd is defined as:

Hcd = Acd

(

A¦

cdAcd

)−1
A¦

cd. (A.5)

Distributing the product in Eq. (A.4) and considering Eq. (A.5) yields:

f(pmk) = ∥ (I−Hcd)y − (I−Hcd)Amkpmk∥
2
2 + λ∥pmk∥1. (A.6)

Defining ỹ ≜ (I−Hcd)y and Ãmk ≜ (I−Hcd)Amk, the problem in Eq. (A.1) is reformulated to an ordinary
LASSO problem:

p̂mk = argmin
pmk

(f(pmk)) = argmin
pmk

(

∥ỹ − Ãmkpmk∥
2
2 + λ∥pmk∥1

)

. (A.7)
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[41] G. Čepon, D. Ocepek, J. Korbar, T. Bregar, M. Boltežar, Sensitivity-based characterization of the bias errors in frequency

based substructuring, Mechanical Systems and Signal Processing 170 (2022). doi:10.1016/j.ymssp.2021.108800.
[42] J. R. Magnus, H. Neudecker, The elimination matrix: some lemmas and applications, SIAM Journal on Algebraic Discrete

Methods 1 (4) (1980) 422–449. doi:10.1137/0601049.
[43] A. M. Kabe, B. H. Sako, Chapter 6 - Multi-degree-of-freedom systems, Vol. vol. I of Structural Dynamics Fundamentals

and Advanced Applications, 2020, pp. 333–435. doi:10.1016/B978-0-12-821614-9.00006-9.
[44] D. Ocepek, F. Trainotti, J. Korbar, D. J. Rixen, M. Boltežar, G. Čepon, Exploring and applying sparse regression in
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