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Abstract

Dynamic substructuring methods serve as a powerful tool in the analysis of
modern complex systems. The coupling of substructures has been successful
with analytically obtained results. However, substructuring with experimen-
tally obtained data remains challenging. One of the main problems associated
with experimental substructuring is the coupling of the rotational degrees of
freedom (RDoFs). A promising method where RDoFs are included implic-
itly is the virtual point transformation. Even though the transformation has
been successfully used in the substructuring process, it is still highly suscep-
tible to inaccuracies in the sensor sensitivity and positioning. In this paper
an expansion to the virtual point transformation is proposed, which enables
the projection of a directly measured rotation response on the interface de-
formation modes. A novel formulation of the weighting matrix is introduced
to consistently include the measured rotations in the transformation. The
proposed expansion is demonstrated on a numerical model of a simple beam-
like structure and compared with the standard transformation. The effects of
inaccuracies in the sensor sensitivity and placement on the overall quality of
both transformation are analysed with a global sensitivity analysis. Finally,
an experimental validation of the proposed expansion is carried out on a steel
beam.
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Preprint submitted to Mechanical Systems and Signal Processing October 21, 2019



Keywords: Frequency Based Substructuring, Virtual Point
Transformation, Interface Rotation, Rotational Degrees of Freedom, Global
Sensitivity analysis

1. Introduction

Dynamic substructuring (DS) enables us to assemble the dynamic prop-
erties of subsystems and accordingly predict the dynamic response of a com-
plete system. Evaluating the subsystem dynamics separately can be advan-
tageous, since each subsystem can either be developed by a different design
team or it would be beneficial to evaluate and optimise the design sepa-
rately, due to the geometrical complexity of the subsystem. The formulation
for DS methods is well defined [1, 2] and coupling with analytical or numeri-
cal data is consistent. However, coupling with experimentally obtained data
has proven to be problematic [3, 4, 5]. For this reason, methods to improve
the experimental dynamic substructuring are still the subject of ongoing re-
search.

One of the DS methods is known as frequency-based substructuring (FBS),
which is based on a response model and was first published by Jetmundsen
et al. [6]. The FBS is also known as Admittance modeling [7, 8] or Impedance
coupling [9]. The method was reformulated in 2006 by de Klerk et al. [10]
to the Lagrange Multiplier FBS method (LM FBS). The main challenge in
LM FBS coupling is the interface modelling and obtaining a full-degrees-of-
freedom (DoFs) frequency-response-functions (FRFs) matrix with transla-
tional and also rotational DoFs. Coupling substructures without rotational
DoFs can lead to erroneous results [11, 12, 13]. Generating rotational FRFs
from a numerical model is straightforward; however, an experimental mea-
surement of the rotational response is still problematic. Therefore, various
methods were developed to implicitly account for rotational DoFs. The sys-
tem equivalent reduction and expansion (SEREP) procedure [14] was used to
include rotational DoFs in coupling by Williams et al. [15]. Rotational mode
shapes were deduced by measuring the strain by Kim et al. [16]. Precisely
positioned translation accelerometers were used to obtain the rotational re-
sponse with the finite-differences theory [17, 18]. Silva et al. [19] estimated
the rotational response based on a modified Kidder’s method. A full 6 × 6
receptance matrix was measured using an X-block attachment in two differ-
ent positions by Mottershead et al. [20] for the structural modification of a
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helicopter tailcone. Mayes et al. [21, 22] proposed a transmission simulator
concept to couple the continuous interface based on modal constraints for
fixtures and subsystems (MCFS) [23].

Additionally, for the LM FBS formulation the interface DoFs must be
collocated on both substructures, which in practice is often hard to achieve.
A method that solves the inclusion of rotational DoFs and the collocation
of the interface DoFs for a discrete interface is the so-called virtual point
transformation (VPT) [24]. The VPT is an upgrade of the equivalent multiple
point connection (EMPC) [25] method. Transformation projects measured
the translational DoFs on so-called interface deformation modes (IDMs),
which are assumed to describe the dynamics of the interface. The interface
can be modelled as rigid or extended with a flexible interface mode as shown
in [5]. The whole transformation can also be interpreted as a minimization
procedure [26].

The objective of this paper is to present an expansion of the virtual point
transformation with measured rotational responses. A combined transforma-
tion matrix is derived, which enables the projection of a directly measured
rotational response on the interface deformation modes. It is shown in [27]
that direct rotational sensors are less prone to errors in measuring rotations
than indirect methods. In addition, a direct quartz-based piezoelectric rota-
tional accelerometer was successfully used by Drozg et al. [11] to obtain a
full DoFs FRF matrix. In order to present the capability of the extension
proposed in this paper, standard and expanded virtual point transforma-
tions were applied on a numerical model of a simple beam-like structure and
evaluated. Additionally, two separate global sensitivity analyses were per-
formed to examine the effect of small deviations in the sensor placement and
sensitivity on the overall quality of both transformations. Furthermore, the
proposed expansion was experimentally validated on a steel beam.

The paper is organized as follows. The next section briefly summarizes
the LM FBS method and the virtual point transformation. The third sec-
tion presents an expansion where directly measured rotational degrees of
freedom are introduced to the virtual point transformation. The fourth sec-
tion presents a numerical case study on a simple beam-like structure, where
the effect of uncertainty in the sensor location and sensor sensitivity on the
overall quality of both transformations was analysed with a global sensitivity
analysis. In the fifth section the practical applicability of the proposed ex-
pansion is demonstrated. In the last section a summary and the contributions
are presented.

3



2. Virtual point transformation

This section introduces the basic theory of the virtual point transforma-
tion, starting with a recap of the LM FBS method [10]. With frequency-based
substructuring (FBS) we can determine the admittance of the assembled sys-
tem YAB from the separate admittances of two substructures YA and YB

(Fig. 1). The governing equation of motion for two uncoupled substructures
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Figure 1: Schematic representation of the substructuring problem.
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uA1
uA2
uB2
uB3

 = u, (1)

where u denotes the displacements, f is the vector of external forces and g is
the vector of interface forces between the two substructures in the coupled
state. To couple the substructures we need to define a connection between
the two. A signed Boolean matrix B enforces the conditions of compatibility:

Bu = 0, (2)

and also the conditions of equilibrium:

g = −BTλ, (3)

where λ are Lagrange multipliers representing reaction forces. Inserting Eq.
(2) and Eq. (3) into Eq. (1) and eliminating λ yields the admittance matrix
of the assembled system:

YABf =
(
YA|B −YA|BBT

(
BYA|BBT

)−1
BYA|B

)
f = u. (4)

1An explicit dependency on frequency is omitted for simplicity of the notation, as will
be done for the remainder of the paper.
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The LM FBS method is based on a full-DOF response model, with col-
located interface degrees of freedom (DoFs). In practice, it is often the case
that neither the sensors nor the excitation points are in the same positions
for the two substructures; therefore, the two substructures cannot be directly
coupled with the LM FBS method.

A virtual point transformation (VPT) enables us to couple two substruc-
tures with non-collocated interface DoFs. The theory of the VPT in this
section summarizes the work of M. V. van der Seijs et al. [24, 2]. The main
idea behind the VPT is to choose a virtual point near the physical interface
of the substructures and project the measured sensor displacements and force
inputs onto the interface deformation modes (IDMs). If we assume only the
rigid-body IDMs then we have m = 6 DoFs for each virtual point (3 trans-
lations and 3 rotations). In addition, flexible deformation modes can also be
added to model more complex connections [5]. The actual transformation is
achieved with the following equation:

Yqm = TuY22T
T
f , (5)

where Y22 denotes the admittance FRF of the non-collocated interface DoFs
(i.e., uA2 and uB2 ), Tu is the displacement transformation matrix derived in
Section 2.1 and Tf is the force transformation matrix derived in Section 2.2.
Yqm is the VP FRF matrix with a perfectly collocated force and displacement
DoF. With the resulting VP FRF matrix, the substructures can be coupled
with the LM FBS method.

2.1. Interface displacement reduction

Interface displacement reduction is achieved with a set of interface dis-
placement modes (IDMs) contained in the matrix Ru ∈ Rnu×m. We want to
express nu measured interface displacements with m IDMs. A simple inter-
face connection is depicted in Fig. 2. If we consider only the rigid IDMs then
the VP has 6 DoFs. That is three translations qνt = [qνX , q

ν
Y , q

ν
Z ], where the

superscript ν refers to a specific VP of a substructure, and three rotations
qνθ = [qνθX , q

ν
θY
, qνθZ ]. The following kinematic relation can be written between

the virtual point DoF qν and the sensor displacement uk, provided that we
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Figure 2: Interface connection example with virtual point and triaxial translation sensor.

know the sensor location and orientation:

ukxuky
ukz

 =

ekx,X ekx,Y ekx,Z
eky,X eky,Y eky,Z
ekz,X ekz,Y ekz,Z

1 0 0 0 rkZ −rkY
0 1 0 −rkZ 0 rkX
0 0 1 rkY −rkX 0




qνX
qνY
qνZ
qνθX
qνθY
qνθZ


+

µkuxµkuy
µkuz

 ,

(6)
where [ekx,X , e

k
y,X , e

k
Z,X ]T are the coordinates of the unit direction X of sensor

k represented in the global reference frame of the structure and the vector µku
contains any residual motion, not included in the subspace of IDMs. If the
rigid assumption of the interface is valid in the considered frequency range,
then the residual motion in µku will most likely be negligible. Eq. (6) can be
expanded to include all the measured displacements:

u = Ruq + µu. (7)

A symmetrical weighting matrix Wu is introduced to gain more control
over the transformation and the equation is solved in a least-mean-square
sense (minimizing the Wu-norm of the residual) for q:

q = (RT
uWuRu)−1RT

uWuu. (8)

The residual displacement is then equal to:

RT
uWuµu = 0. (9)
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Eq. (8) can be further simplified and the displacement transformation matrix
Tu is defined as:

q = Tuu where Tu , (RT
uWuRu)−1RT

uWu. (10)

2.2. Interface force reduction

For the interface force reduction a similar matrix containing IDMs is
constructed. From the interface example in Fig. 2 it is clear that the force
fh will result in a virtual point load mν . Therefore, the following relation
can be written: 

mν
X

mν
Y

mν
Z

mν
θX

mν
θY

mν
θZ

 =


1 0 0
0 1 0
0 0 1
0 −rhZ rhY
rhZ 0 −rhX
−rhY rhX 0


ehXehY
ehZ

 fh. (11)

The contribution from the nf input forces can be combined and accord-
ingly Eq. (11) can be expanded as follows:

m = RT
f f, (12)

where RT
f ∈ Rm×nf is the matrix containing IDMs. In order to perform

the virtual point transformation according to Eq. (5), a force transformation
matrix TT

f is needed. Eq. (12) is typically under-determined since nf ≥ m;
therefore, inversion is achieved with the weighted right inverse of RT

f (i.e.
finding a solution that has a minimal Wf−norm):

f̃ = WfRf(R
T
f WfRf)

−1m, (13)

where Wf is a symmetrical weighting matrix. Eq. (13) can be further rewrit-
ten:

f̃ = TT
f m where TT

f , WfRf(R
T
f WfRf)

−1. (14)

If we were to choose sensor faces for the impact locations the absolute
values in the matrices Ru and Rf would be the same [28, 29]. However, the
obtained FRFs would exhibit poor coherence; therefore, the use of sensor
faces as impact locations is discouraged [2].
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Appropriate position of sensors and impact locations is necessary for ob-
taining a consistent virtual point transformation. The sensors and impact
locations should be in the proximity of the VP to avoid the local defor-
mation around the VP. However, with decreased distance the uncertainties
associated with the position and orientation are increased. Therefore, the
response and excitation positions should be evaluated after the VPT with
the measurement-quality indicators [2].

3. A VPT with a rotational response

Rotational DoFs are essential for a successful coupling of two substruc-
tures. The standard VPT enables us to indirectly measure and include the
RDoFs in substructuring. The reconstruction of the rotational response for
the VPT follows a similar methodology as the reconstruction from two pre-
cisely positioned translational accelerometers attached on a T-element, as
proposed by Ewins et al. [30]. In practice the rotational response obtained
from indirect methods often displays poor overall quality [27]. One of the rea-
sons is the fact that the output signal from the translation movement tends
to overshadow the signal from the rotational motion [31]. This makes indi-
rect methods liable to inaccuracies in the sensor positions and the sensitivity
mismatch [32].

In order to demonstrate the influence of small deviations in the sensor
sensitivity, a simple numerical simulation of a cantilever beam is performed,
as depicted in Fig. 3. Two translation sensors are placed on the free end of
the beam. From the two translations u1 and u2, the rotation θ is determined
with finite differences. In Fig. 4a the translational FRF with and without a
5% calibration inaccuracy are shown.2 As expected, only a small difference
can be seen between the two. However, the same error in the sensitivity
leads to an erroneous rotational FRF, as shown in Fig. 4b. The uncertainties
associated with the accelerometer sensitivity are determined by the sensor
quality and the calibration procedure. According to ISO 16063-21 [33] the
expanded uncertainty for sensitivity can be up to 10% for a calibration in
comparison to a reference accelerometer.

2Deviation in the sensor sensitivity was simulated as a constant additive noise through-
out the whole frequency range (Y err

u2
= (1 + se)Yu2

), where se is the percentage calibration
error.
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Figure 3: Schematic representation of a cantilever beam with two translation sensors
placed on the free end.
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Figure 4: Effect of calibration error in the sensor sensitivity: a) translational FRF Yu2
;

b) rotational FRF Yθ. Without calibration error ( ), 5% calibration error ( ).

In a similar way, inaccuracies associated with the sensor sensitivity and
the position can influence the quality of the VPT. However, with the VPT
the number of measured DoFs is usually larger than the number of IDMs.
Consequently, the transformation is overdetermined and the errors on a single
sensor are reduced due to the least-squares fit. Nonetheless, small inaccura-
cies in the sensor sensitivity and the sensor location are still significant.

The disadvantages of indirect methods lead to the development of a direct,
quartz-based, piezoelectric, rotational accelerometer [34]. To expand the
VPT with the incorporation of the directly measured rotational response, in
this paper a triaxial rotation sensor on a simple interface is considered, as
depicted in Fig. 5.

The main idea behind the transformation stays the same: the measured
rotational response is projected onto the interface deformation modes to ob-
tain the collocated VP FRF Matrix. The following kinematic relation can
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Figure 5: Interface example with virtual point and triaxial rotational sensor.

be written between the virtual point DoF qν and the sensor rotation θk:

θkxθky
θkz

 =

ekx,X ekx,Y ekx,Z
eky,X eky,Y eky,Z
ekz,X ekz,Y ekz,Z

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




qνX
qνY
qνZ
qνθX
qνθY
qνθZ


+

µkθxµkθy
µkθz

 , (15)

where µkθ contains any residual motion. The same as for the translational
response applies here: if the rigid assumption is valid the residual motion
is negligible. If Eq. (6) is compared with Eq. (15) the advantages of the
proposed expansion are clear. The kinematic relation for the rotations is
dependent only on the sensor orientation, whereas with translations the rela-
tion is dependent on the sensor orientation and also the sensor position. Eq.
(15) can be expanded to include all the directly measured rotations:

θ = Rθq + µθ. (16)

Eq. (7) and Eq. (16) can be combined for all the measured displacements
and rotations as follows:[

u
θ

]
=

[
Ru

Rθ

]
q +

[
µu

µθ

]
= Ru,θq + µu,θ. (17)
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To solve Eq. (17) for q in a minimal-quadratic sense, the norm of the
weighted residuals on the displacements and rotations is minimized:

q = argmin

([
µu

µθ

]T
Wu,θ

[
µu

µθ

])
where Wu,θ = diag

[
Wu,Wθ

]
. (18)

In this approach, the rotations of the VP are not determined solely by
the rotational DoFs. Indeed, the VP rotations also influence the translation
residual (see Eq. (6)), and the degrees of freedom computed by Eq. (18) for
the VP minimize µT

uWuµu + µT
θWθµθ. Therefore, rotational DoFs can still

be estimated even if less than 3 rotations are directly measured for a VP.
As explained above, the Eq. (18) minimizes the sum of residual on the

translation and rotational sensors. Therefore, in order to evaluate both resid-
uals in a comparable norm, a proper weighting matrix for the rotations should
be used.

Consider that the rotational measurement around x axis at rotation sen-
sor k has a residual µkθx (see Fig. 5). If the VP would be given that residual
rotation, the sensor would undergo a displacement µkθxI

k
x , where Ikx is the dis-

tance between the x axis across the VP and the sensor location and is equal
to
√
r2y + r2z . A similar reasoning can be done for the rotational residuals

around the other axes and for each additional rotational sensor. If the norm
of overall displacements due to the rotational residuals at the VP is chosen
to be minimised, the following rotational weighting matrix should be used:

Wθ = diag
[(
Ikx
)2
,
(
Iky
)2
,
(
Ikz
)2
, . . .

]
. (19)

With the proposed formulation of the rotational weighting matrix the
Eq. (17) can be solved for q and the combined transformation matrix Tu,θ is
obtained:

q = Tu,θ

[
u
θ

]
where Tu,θ , (RT

u,θWu,θRu,θ)
−1RT

u,θWu,θ. (20)

The proposed formulation of the combined weighting matrix is minimizing
the norm of the displacement residuals for each translation sensor, and for
each rotational sensor the norm of overall displacement due to the rotational
residual at the virtual point. Therefore, the residuals from the rotational and
translation sensors can be compared and Eq. (18) is consistent (assuming
Wu is taken as identity).
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Note that the positions of the rotational sensors are only used to define
a proper norm for the least square problem: if the rotational measurements
were all perfect, the rotation of the VP would be found exactly, notwith-
standing any error in the position of those sensors (see Eq. (15)). This is
not the case when rotations are derived from the translation sensors (see Eq.
(6)). A specific case for the proposed weighting matrix is when the rotations
would be measured right at the VP. Then the weighting matrix Wθ (Eq.
(19)) would become a zero matrix and the directly measured rotational re-
sponse would be excluded from the transformation. Therefore, the expanded
VPT cannot be used when the rotations are measured perfectly at the VP.
However, the position of the VP can always be moved away from the position
of the rotational accelerometer, since the position of the VP in the vicinity
of the interface is arbitrary to some extent. This limit case shows however
that the scaling proposed, based on pure geometrical reasoning, is proba-
bly not the ultimate choice and maybe different scaling strategies should be
developed in the future.

3.1. Measurement-quality indicators

One of the most important features of the virtual point transforma-
tion is also the capability to assess the overall quality of the measurement.
Measurement-quality indicators are actually a by-product of the virtual point
transformation. Two different measurement-quality indicators can be calcu-
lated, i.e., the sensor consistency and the impact consistency [2]. In addition,
an error indicator based on the expected reciprocity for the FRF of the VP
was also proposed (see later). The presented expansion of the VPT does not
affect the formulation of the quality indicators; therefore, sensor and impact
consistency can be calculated without any modification.

4. Numerical case study

The proposed expansion of the virtual point transformation is demon-
strated on a simple beam-like structure. Two virtual points are set in the
center of a hole on each side of the structure, as shown in Fig. 6a. The
dynamic response of the structure is obtained from a finite-element analysis,
proposed free-free boundary condition (Fig. 6b). The geometry and material
properties of the analyzed structure are presented in Table 1. For each vir-
tual point, displacement and rotational FRFs were synthesised at 3 separate
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Figure 6: Beam-like structure with 2 virtual points and three sensor locations (red) for
each virtual point: a) schematic representation; b) FEM model.

Table 1: Beam-like structure’s geometrical and material properties.

Parameter Unit Value

l mm 800
h mm 190
w mm 20
ρ kg/m3 7933
E GPa 210

locations through inversion of dynamic stiffness with a constant damping ra-
tio3 of ξ = 5% (see Fig. 6a). Twelve different impact locations per virtual
point were simulated. The impact locations in direct line of sight are de-
picted with red arrows and others with grey arrows in Fig. 9a. Overall, 864
FRFs were generated (Ysim ∈ C36×24) from the numerical model, stretching
a frequency bandwidth from zero to 3 kHz. The rotational and translational
FRFs were averaged from the nodal displacements obtained from nodes on
the surface over an 8×8 mm area, to replicate the experimental measurement

3Applied constant damping ratio was defined using the ANSYS APDL command DMP-
STR.
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of the FRF. Uncertainties associated with real measurements (i.e. measure-
ment noise, sensor and impact location or orientation error) were excluded
from the numerical simulation; however, small error in the transformation
should be expected due to the averaging over an area and the deformation
of the interface. Additionally, driving- and transfer-point VP FRFs were
computed using the multipoint constraint elements MPC184 for reference.4

The analysed beam-like structure is symmetric over the x-y plane (see
Fig. 6a). Thus, some of the directions are inherently uncoupled (such as
qx-qz, qy-qz, qz-θz, etc.). The corresponding off-diagonal terms in the FRF
matrix should therefore be very small compared to driving point transfer
functions. If the FE model would be fully symmetric the FRFs between
uncoupled directions would be zero for DoFs on the neutral axis (here the
axis of symmetry) and be very small for DoFs on θ and lower surfaces since
the thickness of the structure is small.

4.1. Virtual point transformation

The virtual point transformation was applied to transform the synthesised
FRF matrix to a virtual point FRF matrix. Two different transformations
were considered. The first one was the standard VPT with three tri-axial
translation sensors. The second one was the expanded VPT with two tri-
axial translation sensors and one tri-axial rotational sensor per virtual point
(sensor A2 and B2 depicted in Fig. 6a). The displacement and force weighting
matrices were chosen to be the identity matrix and the rotational weighting
matrix was calculated by Eq. (19) for consistent comparison between the
two transformations. The coherence criterion [24] was used to assess the
overall reciprocity of VP FRF matrix and with that the quality of both
transformations:

χij = coh(Yij,Yji) =
(Yij + Yji)(Yij + Yji)

2(Yij Yij + Yji Yji)
. (21)

The norm of the residuals in translations and rotations could also be used as
a quality indicator; however, low norm of the residuals and with that high

4VP DoF were averaged from the nodal displacements near each VP and applied loads
were distributed over the same nodes. Constraint equations created with the MPC184
elements can be regarded similar to those created with the RBE3 elements. No artificial
stiffening is introduced to the model by using this type of formulation.
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sensor and impact consistency does not necessarily mean a truthful VP FRF
matrix [2].

Figure 7 shows the frequency-averaged reciprocity of the transformed VP
admittance matrix for the two transformations. The uncoupled directions
are shown semitransparent. The average reciprocity of the standard VPT
over the whole frequency bandwidth is 75%, while the expanded VPT with
rotations has an average reciprocity of 83%. The largest deviations in the
reciprocity are observed in the inherently uncoupled directions (the symme-
try over the x-y plane). An excitation in the x or y direction leads to a
negligible response in the z direction; therefore, even a small uncertainty in
the excitation or the response can lead to a large reciprocity error.
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Figure 7: Frequency-averaged reciprocity of the transformed virtual point FRF matrix:
a) standard VPT; b) expanded VPT with rotations.

The transformed FRFs for the two cases of transformation and numer-
ically obtained reference VP FRFs obtained from the numerical model are
depicted in Fig. 8. It is clear that in most directions both transformations
are in good agreement with the reference FRF, as seen in Figures 8a, 8b and
8c. But for the inherently uncoupled direction as an example Fig. 8d both
transformation are erroneous. For that reason the comparison of both trans-
formations will not be performed on the uncoupled directions. The results
in those directions will be shown semitransparent.

From Fig. 8d, we also observe that, for the higher frequency range, the
FRFs obtained by the the VPT and from the MPC184 averaging at the con-
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nection differ. This is indicates that at higher frequencies it is not enough to
consider the interface as behaving rigidly: considering the averaged displace-
ments in the MPC184 is no longer meaningful and, for the VPT, additional
interface deformation modes should be considered (as was for instance pro-
posed in [5])
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Figure 8: Comparison between expanded VPT with rotations, standard VPT and numer-
ically obtained FRFs for VP: a) YθAX -MB

X
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X
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Y
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Z
. Expanded

VPT with rotations ( ), standard VPT ( ), reference FRF ( ) (simulated mea-
surements without any noise or location error).

4.2. Global sensitivity analysis

The overall quality of the virtual point transformation is primarily depen-
dent on the sensor and impact positioning. Even a small uncertainty in the
sensor and impact orientation or location can lead to an erroneous transfor-
mation. The effect of a small deviation in the direction of the impacts on the
quality of the VPT has already been considered in [2]; therefore, that effect
will be omitted in the analysis (i.e., the impact location and orientation are
correct).
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Firstly, small deviations in the sensor location, as depicted in Fig. 9, are
considered and its effect is analyzed in terms of the overall quality of the

x

y

z

rk

(a)

re

(b)

Figure 9: Virtual point location with sensor and impact locations: a) correct sensor
position; b) small deviation in sensor position.

transformation. The evaluation model is equal to:

χij(r
1A

e , r
2A

e , r
3A

e , r
1B

e , r
2B

e , r
3B

e ) = coh(Yij,Yji) Yij,Yji ∈ Yqm, (22)

where χij is a scalar value of the averaged coherence (Eq. (21)) over the
whole frequency bandwidth and r∗e = [r∗x, r

∗
y, r
∗
z ] is a vector of deviations in

each sensor location.
Secondly, the effect of the deviation in the sensors’ sensitivity is analysed.

The evaluation model for the second case is equal to:

χij
(
s1

A

e , s
2A

e , s
3A

e , s
1B

e , s
2B

e , s
3B

e

)
= coh(Yij,Yji) Yij,Yji ∈ Yqm, (23)

where s∗e = [s∗x, s
∗
y, s
∗
z] is the vector of the sensitivity deviations for each

sensor. The locations of the sensors were assumed to be correct in this case.

4.2.1. Sobol’s sensitivity analysis

There are many ways of evaluating the global sensitivity. Here, Sobol’s
sensitivity analysis5 is used for reasons of its robustness and widespread us-
age. The method was originally developed by Sobol [35] in 2001 and then
further improved by Saltelli et al. [36, 37]. The first-order Sobol’s sensitivity
index of each input parameter is calculated as:

S
χij

1 =
Vri

(
Er∼i

[χij|ri]
)

V(χij)
, (24)

5The method of global sensitivity indexes developed by Sobol is based on ANOVA
decomposition, for more details see Appendix A.
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where V(∗) is the variance operator, E[∗] is the expectation operator, ri is
the ith input parameter and r∼i is a set of all the parameters except the
ri. The first-order index measures the main effect of the parameter ri alone.
The total effect index measures the effect of the parameter ri, including all
the higher-order interactions with other input parameters, and is defined as:

S
χij

T = 1−
Vr∼i

(
Eri [χij|r∼i]

)
V(χij)

. (25)

The workflow of the global sensitivity analysis for the two evaluation
models (Eq. (22) and (23)) is depicted in Fig. 10. Both the aformentioned
transformations (standard and expanded) were analysed and compared with
each other.

Firstly, the uncertainty in the sensor location was analysed (Fig. 10a).
The location of each sensor was deviated inside a 5 mm interval according to
the Saltelli sample scheme. For each iteration a virtual point transformation
was performed and the coherence criterion (Eq. (21)) was calculated between
the reference FRF and the transformed FRF. The reference FRF is calculated
with the assumed correct location of the sensors.

Secondly, the uncertainty in the sensor sensitivity was analysed in a sim-
ilar way (Fig. 10b). The sensitivity of each sensor axis was deviated inside
a 5% interval according to the Saltelli sample scheme and the coherence
criterion was calculated for each iteration.

4.2.2. Effect of the deviation in sensor location

Determining the correct locations for the sensors on large structures can
be demanding and small uncertainties in the sensor placement are not un-
common. Figure 11 shows the FRFs YθAX -MB

X
and YθBX -MB

X
with small random

deviations r∗e = 5mm in the location of the sensors. It was shown that the
FRFs are very similar for the standard and expanded VPT with rotations
if the correct positions of the sensors are assumed (Fig. 8). However, even
a small random deviation in the location of the sensors have a considerable
effect on the standard VPT and negligible effect on the expanded VPT with
rotations.

The first-order and total-order Sobol sensitivity indexes for the influence
of sensor-location deviations on the FRF YθBX -MB

X
are shown in Fig. 12. If the

sensor is misplaced in one direction (e.g. r2
By

e which has negligible first-order
sensitivity index), then the misplacement in that particular direction has
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Figure 10: Workflow of the global sensitivity calculation: a) deviation in the sensor loca-
tion; b) deviation in the sensor sensitivity.
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Figure 11: Effect of small random deviations (r∗e = 5mm) in the sensors location on the
FRF: a) YθAX -MB

X
; b) YθBX -MB

X
. Expanded VPT with rotations ( ), standard VPT ( ),

reference FRF ( ).
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an effect on the observed FRFs in combination with misplacement in other
directions. Additionally, this also implies that the misplacement in single
direction will never effect only the observed FRFs but also FRFs in other
directions. Therefore, a clear advantage of the expanded VPT with rotations
is seen, since the deviations in the position of the rotational sensor has no
effect on the transformed FRF (the position of the rotational sensor is only
used to define a proper norm of the residuals see Eq. (19)).

Figure 13 shows the averaged total-order Sobol sensitivity indexes for the
whole VP FRF matrix. A deviation of the sensor location is less impactful
for the expanded VPT with rotations than for the standard VPT.

A deviation in the sensor location can also be detected by the overall
sensor consistency [2]. However, a small deviation in sensor location or sensor
sensitivity leads to the same poor sensor consistency over the whole frequency
range, therefore it is difficult to distinguish between these two effects.
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Figure 12: Sobol-sensitivity index for deviations in the sensor location for FRF YθBX -MB
X

:

a) standard VPT; b) expanded VPT with rotations.
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Figure 13: Averaged total-order Sobol-sensitivity index of the coherence criterion for de-
viations in the sensor location: a) standard VPT; b) expanded VPT with rotations.

4.2.3. Effect of the sensor measurement sensitivity deviation

The sensor measurement sensitivity should be determined annually with
a proper calibration procedure [38]. Measurement sensitivity is always de-
termined with an appropriate confidence interval. The size of the interval is
determined by the sensor quality, as well as the calibration procedure. For
that reason small deviations in the sensor measurement sensitivity are al-
ways present. Figure 14 shows the effect of small random deviations s∗e = 2%
in measurement sensitivity of the sensors on the FRFs YθAX -MB

X
and YθBX -MB

X

for both transformations. It is evident that the measurement sensitivity mis-
match has a substantial effect on the standard VPT and practically negligible
effect on the expanded VPT with rotations.

The first-order and total-order Sobol-sensitivity indexes for how small
deviations in the measurement sensitivity effect the FRF YθBX -MB

X
are shown

in Fig. 15. A similar conclusion can be drawn as before for deviations in the
sensor placement. The standard VPT is more susceptible to small deviations
in the sensor measurement sensitivity. In Fig. 16 the averaged total-order
Sobol-sensitivity indexes for the whole VP FRF matrix are shown. It is
evident that the expanded VPT with rotations is less prone to uncertainties
in the sensor measurement sensitivity.
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Figure 14: Effect of small random deviations (s∗e = 2%) of the sensors measurement
sensitivity on the FRF: a) YθAX -MB

X
; b) YθBX -MB

X
. Expanded VPT with rotations ( ),

standard VPT ( ), reference FRF ( ).
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Figure 15: Sobol-sensitivity index for deviations in the sensor measurement sensitivity for
the FRF YθBX -MB

X
: a) standard VPT; b) expanded VPT with rotations.
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Figure 16: Averaged total-order Sobol-sensitivity index of the coherence criterion for de-
viations in the sensor measurement sensitivity: a) standard VPT; b) expanded VPT with
rotations.

5. Experimental case study

This section demonstrates the practical applicability of the proposed ex-
pansion of the virtual point transformation. Both transformations, standard
and expanded, were performed on two steel beams of different length in an
approximately free-free boundary conditions. First a large beam with dimen-
sions of 12 × 40 × 600 mm was analysed (Fig. 17b), secondly, a small beam
with dimensions 12× 40× 300 mm (Fig. 17a). Only two degrees of freedom
for each VP were considered (translational in the x direction and rotational
around the z axis). The FRFs of the small beam obtained from standard
and expanded transformations were coupled and compared with the reference
FRFs obtained from both transformations on the large beam.

5.1. Measurement

The two virtual points L and R are set on each side of the two beams.
Three Dytran 3097A2T single-axis accelerometers were attached near each
VP, together with a Kistler 8840 rotational accelerometer (schematic rep-
resentation of locations depicted in Fig. 18). Six different impact locations
per VP were chosen and a PCB 086C03 modal hammer with an aluminium
tip was used to excite the beams at each location. The FRF and coherence
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Figure 17: Experimental setup: a) small beam 12×40×300 mm; b) large beam 12×40×
600 mm.

functions were obtained in the frequency range up to 2000 Hz with a 1 Hz
spacing using the H1 estimator. The frequency range is defined by a rota-
tional accelerometer, since it is calibrated between 1 and 2000 Hz. However,
relatively good agreement between the measured rotational response and the
numerical reference was obtained in [11, 27] within the 3 kHz frequency range.
Altogether, 96 FRFs were measured (Yexp ∈ C8×12) for both beams. With
that, a sufficient over-determination for the transformations was obtained as
only two degrees of freedom per VP were considered.

5.2. Virtual point transformation results

Two different displacement transformation matrices for the standard TStd.
u

and expanded TExp.
u,θ VPT were calculated for each beam. For the standard

VPT only the three translational accelerometers were used and for the ex-
panded VPT two translational accelerometers (the two near the VP), to-
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Figure 18: Schematic representation of impact and sensor locations around the virtual
point L: a) small beam; b) large beam.

gether with a rotational accelerometer. The force transformation matrix Tf

is the same for both transformations and was calculated based on the impact
locations. The force and displacement weighting matrices were chosen to be
an identity matrix and the rotational weighting matrix was calculated by Eq.
(19) to objectively compare the two transformations. After applying both
transformations, two 4 × 4 virtual point FRF matrices were obtained. The
reciprocity of each transformation was assessed with the coherence criterion
(Eq. (21)).

5.2.1. VPT on the large beam

Figure 19 shows the frequency-averaged reciprocity for both transforma-
tions. Only a small difference between each transformation can be observed,
where the expanded VPT slightly outperforms the standard VPT. The total
reciprocity averaged over all directions is around 98% for both transforma-
tions.

However, when looking at the reciprocal FRFs for each transformation
the main advantage of the expanded VPT can be seen. In Fig. 20 the FRF
YqRX -MR

Z
and their reciprocal YθRZ -FR

X
is shown. We can see a good agreement

between the FRFs, except for around the anti-resonance region, where er-
roneous results are obtained from the standard VPT. The poorly defined
anti-resonance is mostly due to small deviations in the sensor and impact
positions, which are always present. In Fig. 21 a similar observation can be
made for the transformations on the driving point FRFs YθLZ -ML

Z
and YθRX -MR

Z
.
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Figure 19: Comparison of the coherence values between the reciprocal virtual point FRFs
for both transformations on the large beam: a) standard VPT; b) expanded VPT.
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Figure 20: Virtual point FRF YqRX -MR
Z

and their reciprocal YθRZ -FR
X

for both VP transfor-

mations on the large beam: a) standard VPT; b) expanded VPT.

5.2.2. VPT on the small beam

A simmilar comparison between the two transformations can be observed
even on the small beam. In Fig. 22 the frequency-averaged reciprocity for
both transformations is shown. The expanded VPT is slightly outperforms
the standard VPT. The total reciprocity averaged over all directions is also
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Figure 21: Driving point FRFs of virtual point for both transformations on the large beam:
a) FRF YθLZ -ML

Z
; b) FRF YθRX -MR

Z
. Expanded VPT with rotations ( ) and standard

VPT ( ).

around 98% for both transformations, as was on the large beam.
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Figure 22: Comparison of the coherence values between the reciprocal virtual point FRFs
for both transformations on the small beam: a) standard VPT; b) expanded VPT.

In Fig. 23 the reciprocal FRFs YθLZ -MR
Z

and YθRZ -ML
Z

are shown. The
FRFs for both transformations are consistent with the expanded VPT being
marginally more reciprocal. Only in the low frequency range a rather high
levels of noise can be observed which is due to the noise present in the ro-
tational FRFs obtained from rotational accelerometer [11, 27]. A frequency
dependent weighting matrix could be defined using a coherence values of ro-
tational FRFs to give lower weighting to the rotational accelerometer in the
low-frequency range [26].
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Figure 23: Virtual point FRF YθLZ -MR
Z

and their reciprocal YθRZ -ML
Z

for both VP transfor-

mations on the small beam: a) standard VPT; b) expanded VPT.

5.3. Substructuring results

Four different VP FRFs sets were evaluated to experimentally validate
the expanded VPT. Two reference VP FRFs were obtained by performing
standard and expanded VPT on the large beam as depicted in Fig. 24. Two
coupled VP FRFs were obtained by coupling the two VP FRFs of the small
beam using the LM FBS method (Eq. (4)) as depicted in Fig. 25.
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Figure 24: Schematic representation of workflow for calculating the reference VP FRFs
from the large beam: a) standard VPT, b) expanded VPT with rotations.
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Figure 25: Schematic representation of workflow for calculating the coupled VP FRFs
from the small beam: a) standard VPT, b) expanded VPT with rotations.

In Fig. 26 the reciprocal FRFs YθLZ -MR
Z

and YθRZ -ML
Z

obtained after coupling
the two VPs of the small beam are shown. We can see that the coupled FRFs
have a high reciprocity practically over the whole frequency range, except in
the proximity of 700 Hz and 1750 Hz where two inconsistent peaks can be
observed. The two spurious peaks appear at the position of the subsystem
eigenfrequencies (i.e. small beam). These two spurious peaks are induced
from small inconsistencies from the measurement. Even small inaccuracies
in the vicinity of the eigenfrequencies of each subsystem can induce spurious
peaks whenever lightly damped subsystem are coupled using the LM FBS
method [39].

In Fig. 27a the VP FRF YθLZ -MR
Z

obtained from all four combinations
is shown. The reference FRFs are similar for both transformations as was
already shown. The location of eigenfrequencies is slightly shifted between
the reference and coupled FRFs. This is probably due to the effect of different
mass loading of the sensors during measurement of the FRFs on both beams,
since there are no sensors placed around the interface on the long beam (see
Fig. 17b). However, a slight improvement can be observed on the coupled VP
using the expanded VPT considering the amplitude of the coupled FRF at
the position of eigenfrequencies (see Fig. 27b). This could be related to more
consistent VP FRFs obtained from the expanded VPT. A similar relations
can be observed for the VP FRF YθRZ -MR

Z
shown in Fig. 28.

The use of a directly measured rotational response in the virtual point
transformation can increase the reliability and validity of the whole transfor-
mation; however, the coupled FRFs from the standard VPT and expanded
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Figure 26: Coupled virtual point FRF YθLZ -MR
Z

and their reciprocal YθRZ -ML
Z

: a) standard

VPT; b) expanded VPT.

are similar except for the amplitude at the position of eigenfrequencies. The
expanded virtual point transformation does not remove spurious peaks from
the assembled system located at the local eigenfrequencies of each subsystem.
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Figure 27: Comparison between coupled and reference VP FRF YθLZ -MR
Z

obtained from

standard and expanded VPT: a) the whole frequency range b) zoomed-in region around
each eigenfrequency.
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Figure 28: Comparison between coupled and reference VP FRF YθLZ -MR
Z

obtained from

standard and expanded VPT: a) the whole frequency range b) zoomed-in region around
each eigenfrequency.
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6. Conclusion

This paper presents an expansion of the standard virtual point transfor-
mation with directly measured rotational degrees of freedom. The expanded
VPT enables the projection of measured rotation responses on the interface
deformation modes. The applicability of the proposed expansion was demon-
strated on a numerical case study, where standard and expanded VPTs were
performed on a simple beam-like structure. A global sensitivity analysis was
performed to gain an insight into how small inaccuracies in the sensor posi-
tion or the sensor measurement sensitivity effect the overall quality of both
transformations. The expanded VPT is less sensitive to small inaccuracies
in comparison with the standard VPT. The expansion was experimentally
validated on a beam structure where promising results can be obtained with
the inclusion of a rotation response, especially within the anti-resonance re-
gions of the VP FRFs. The inherent noise of the rotational accelerometer
was shown to have an effect on the VP FRFs in the low-frequency range
up to 300 Hz. The presented expansion of the VPT can decrease the uncer-
tainties associated with the sensor position and sensitivity when performing
application on real structures.
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Appendix A. Sobol sensitivity analysis

The method of global sensitivity indexes developed by Sobol is based on
the analysis of variance (ANOVA) decomposition [35]. Consider that the
evaluation model is described by a square integrable function f(x) defined
in the unit hypercube In = [0, 1]n:

u = f(x) = f(x1, . . . , xn). (A.1)

where u is a scalar output and x an input inside the unit hypercube. The
first step to Sobol’s method is the decomposition of the evaluation function
in the following form:

u = f(x1, . . . , xn) = f0 +
n∑
i=1

fi(xi) +
∑
i<j

fij(xi, xj) + · · ·+ f1...n(x1, . . . , xn),

(A.2)
where f0 =

∫
f(x)dx. The decomposition is unique if the integral of each

term fi1...is(xi1 , . . . , xis) over any independent variable is zero:∫
fi1...is(xi1 , . . . , xis)dxk = 0 for k = i1, . . . , is. (A.3)

It follows that all the terms in (A.2) are mutually orthogonal and can be
expressed as integrals of f(x). As assumed, the function f(x) is square
integrable:∫

f 2(x)dx− f 2
0︸ ︷︷ ︸

D

=
n∑
i=1

∫
f 2
i (xi)dxi︸ ︷︷ ︸
Di

+
∑
i<j

∫
f 2
ij(xi, xj)dxidxj︸ ︷︷ ︸

Dij

+ · · ·+

+

∫
f 2
1...n(x1, . . . , xn)dx1 · · · dxn︸ ︷︷ ︸

D12...n

,

(A.4)

where D is the total variance and Di, Dij and D12...n are partial variances.
Dividing both sides of the equation (A.4) by the total variance D we obtain
the definition of the global sensitivity indexes:

n∑
i=1

Di

D︸︷︷︸
Si

+
∑
i<j

Dij

D︸︷︷︸
Sij

+ · · ·+ D12...n

D︸ ︷︷ ︸
S12...n

= 1. (A.5)
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The most commonly used sensitivity indexes are the so-called first-order and
total-order indexes. The first-order sensitivity index Si defines the first-order
effect of xi on the model output and the total-order sensitivity index STi the
total effect, i.e., the first and all the higher-order effects of the factor xi.

The main advantage of the Sobol sensitivity analysis is the computation
algorithm that allows an estimation of the global sensitivity indexes using
only the output values of f(x). Monte Carlo sampling-based methods have
been developed for first-order and interaction indexes by Sobol [35] and ad-
ditionally for a total-order index by Saltelli [36].
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