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A1: Purpose, Ultimate objective 

• Understanding and modelling the 
belt drive’s dynamics in order to 
minimize vibrations and noise. 
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• Belt drive: 
�Search for an appropriate belt model and the 

model verification  

�Analysing and modelling belt-pulley contact 
problems  

�Modelling and verifying the model of the 
whole drive  

�Drive’s model fine tuning  

�Model analysis 
 

Objectives - scope of work 
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A5: Quantification of Project benefits 

• Dynamical systems’ models  enables us to master 
vibrations and consecutively noise. 

• Virtual dynamical analysis of the belt drive at the 
drive’s offering stage. 

• Shorter product’s development period. 
• Student involvements, applied scientific research 
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STATE  OF  THE  ART 
 

and 
 

PREVIOUS  COOPERATION 
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B0: State of the Art – Belts (1) 

There are different objects on which the dynamical 
analysis is orientated to: 

• the belt itself [2,4,14,15,31,33,35,36,38,41,42,45,47,49], 
• the pulley [8,12,51], 
• the contact between belt and pulley [21,24,25,32,44,48,50], 
• whole belt drive 

[1,3,5,6,7,9,10,11,12,13,16,18,19,20,22,23,26,27,28,29,30,34,37,41,40,43] and 
• belt drive with multiple belts [17]. 
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B0: State of the Art – Belts (2) 

There are different models used to model the 
belt: 

• the continuous viscoelastic dynamical model [14,15], 

• the continuous elastic dynamical model 
[3,4,5,7,9,10,23,27,31,33,35,36,37,38,41,40,47], 

• the discrete dynamical model [1,11,17,21,41], 

• the FEM model [12,26,40]. 
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B0: State of the Art – Belts (3) 

The continuous belt model for dynamical research is 
used from ~1960 onwards. It may be linear or non-
linear elastic model or viscoelastic one. 

The articles tackling the dynamical problem with the 
FEM are scarce. 

There is only one article that solves timing belt model 
and contact between pulley and belt in purely discrete 
way [21]. 
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B0: State of the Art – Belts (4) 

Modeling the belt alone is not sufficient to capture 
whole belt-system dynamics. The effects of:  

• the free span on system dynamics, 

• the pulley eccentricity, 

• the tensioner dynamics and 

• dynamic stability 

are studied when whole belt-drive is modeled. 
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B0: State of the Art – Belts (5) 

Some conclusions: 

• The smaller the radius of the rounded tip corners of 
the pulley teeth, the lower the noise of the belt [43]. 

• Small traverse oscillation of an endless band 
supported by wheels couples the response of the free 
spans of the band to oscillation of the wheels [37,40]. 

• Adjustment of pulley tooth height is confirmed to be 
effective for reducing the traverse vibration [18]. 
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B0: State of the Art – Belts (6) 

Some conclusions (cont.):  

• High frequency noise is generated by the 
discontinuous slips and the flow of holding air 
between the belt and pulley of trial belts [13]. 

• The quadratic non-linerity terms in the equations of 
motion of belt drive are found to affect the belt drive 
systems significantly [10].  
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B0: State of the Art – Belts (7) 

Some conclusions (cont.):  

• The vibrational power of the two belt-spans flows 
into the tensioner [9]. 

• The belt vibrates laterally if the accessory belt’s 
natural frequency is equal to ½ of the frequency of 
belt vibration length fluctuation [5].  
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B0: State of the Art – Belts (8) 

Some conclusions (cont.): 

• Transverse belt instability mechanisms: 
– tensioner resonance [41], 

– belt resonance [41], 

– belt critical speed [41], 

– Mathieu instability due to belt tension variations 
[3,7,41,49] 
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B0: Previous  cooperation (1) 

Mihael Bogataj, Vibration and noise of automotive belts, 
Diploma Thesis, 2000, 

University of Ljubljana, Faculty of Mechanical Engineering 



 stran 15/69 

BELTS 
 

and 
 

BELT   DRIVES 
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B1: Analytical   
Belt-Drive vibrations 

• Torsional vibrations of pulleys. 

• Vibration due to pulleys’ elastic mounting. 

• Belt span vibrations: 
� axial vibrations, 

� transversal vibrations (in-plane and out-of-plane), 

� torsional vibrations, 

� couplings between ones. 
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B1: Analytical - Belt-Drive vibrations 
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B1: Analytical - Excitation mechanisms 
for transverse vibration 

• No direct forces applied on the belt span 
• Non-homogeneous boundary conditions due to 

pulley’s eccentricity 
• Variation of the belt velocity or/and belt tension 

(parametric exitation) due to: 
� axial belt oscillations, 
� variation of the driving torque, 
� pulley’s eccentricity, 
� tensioner dynamics, 
� temperature variations, 
� elasticity of pulleys’ mountings. 
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B1: Analytical - Excitation mechanisms 
for transverse vibration 

• Pulley’s eccentricity 
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B1: Analytical - Excitation mechanisms 
for transverse vibration 

• External moment 
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B1: Analytical - Excitation mechanisms 
for transverse vibration 

• Non-homogeneous boundary conditions 
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B1: Analytical   
Non-Linear effects 

• are the consequence of 
� high belt velocity (v > 0.3 c), 

� coupled transverse and axial vibrations, 

� parametric exitation and parametric resonances, 

� material models (viscoelastic), 

� tensioner dynamics. 

 

 

 



 stran 23/69 

B1: Analytical   
Belt-Span Linear Equation of motion 

• Free transverse vibrations of the string model: 

 

 

 

• Free transverse vibrations of the beam model: 
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B1: Analytical   
Belt-Span Coupled Equations of motion 

• Free axial-transverse vibrations of the model: 
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B1: Analytical – Belt-Span Configuration 

• Configuration 1 
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B1: Analytical – Belt-Span Configuration 

• Configuration 2 
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B1: Analytical – Belt-Span Configuration 

• Configuration 3 
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B1: Analytical – Belt-Span Configuration 

• Configuration 4 
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B1: Analytical – Belt-Span Configuration 

• Configuration 5 
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B1: Analytical - Belt-Drive vibrations 
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C1: Results , belt span modelling (1)  

• Free transverse vibrations of the string model: 

 

 

 

• Free transverse vibrations of the beam model: 
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C: Results, belt span modelling (2) 
a/c=0 a/c=0.003 

a/c=0.03 a/c=0.3 

string model beam model, predominant string behaviour 

beam model, mixed behaviour beam model, predominant beam behaviour 
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C: Results, belt span modelling (3) 
Example of usage of belt span’s natural frequencies (NF) 

Linear resonances due to pulleys’ eccentricity 
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C: Results, belt span modelling (4) 
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C: Results, belt span modelling (5) 
Case study – the system 
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C: Results, belt span modelling (6) 
Case study – the data 

� [kg/m] E [Pa] A [m2] I [m4] Direction 

0.015 800 � 106 180 � 10-6 896 � 10-12 CW 

Pulleys’ data: 

Belt’s data: 

Pulley x [m] y [m] r [m] Power [W] n [rev/min] 

0 0.00 0.00 0.20 1000 1000 

1 0.80 0.00 0.25 -1000 

2 0.32 0.15 0.05 0 
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C: Results, belt span modelling (7) 
Case study – basic geometry 

Pulley ��[o] � in [
o] � out [

o] 

0 196.3 70.1 266.4 

1 202.9 266.4 289.3 

2 39.2 289.3 70.1 
� 

�in 

����out 

x 

y 

0 1 

2 
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C: Results, belt span modelling (8) 
Case study – basic geometry 

Span L [m] � [o] x0 [m] y0 [m] x1 [m] y1 [m] 

0 0.798 -3.6 -0.013 -0.200 0.784 -0.250 

1 0.404 -160.7 0.717 0.236 0.337 0.103 

2 0.250 160.1 0.303 0.103 0.068 0.188 

� 

L 
T0 (x0,y0) 

T1 (x1,y1) 

x 

y 

Belt length: 3.056 m 

0 

1 2 
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C: Results, belt span modelling (9) 
Case study – hub loads 

� 

x 

y 

F Pulley F [N] � [o] 

0 101.3 -7.9 

1 100.5 -177.6 

2 18.2 89.7 

0 1 

2 
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C: Results, belt span modelling (10) 
Case study – span tension 

Span F [N] 

0 74.9 

1 27.2 

2 27.2 

0 

1 2 
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C: Results, belt span modelling (11) 
Case study – natural frequencies and linear 

resonances due to pulleys’ eccentricity 
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C: Results, belt drive modeling (1) 
Assumptions: 

• There is no slip between belt and pulley 

• The mass of the belt is ignored 

• Fixing flexibility of pulleys is negligible 

• The bending stiffness of the belt is negligible 

• Model of belt span (          ) 
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C: Results, belt drive modeling (2) 
Pulleys rotational vibrations: 

• Model with fixed pulleys (linear model) 

)}({)}(]{[)}(]{[)}(]{[ tMtKtCtJ ��� ��� ���
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C: Results, belt drive modeling (3) 
Pulleys rotational vibrations: 

 

• Mass matrix 

 

• The form of matrices [K] and [C] 
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C: Results, belt drive modeling (4) 
Pulleys rotational vibrations:  

• Model with tensioner (nonlinear model) 

Model of tensioner 
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C: Results, belt drive modeling (5) 
Pulleys rotational vibrations: 

• Linearization equations of motion around dynamic 
equilibrium 
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C: Results, belt drive modeling (6) 
 Case study – torsional vibrations 

Alternator 

Ventilator 
Tensioner 

Drive pulley 

Basic technical data 
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C: Results, belt drive modeling (7) 
 Case study – tensioner arm 

• Kinematic exitation  
                                                                             

)sin(50)1(60)(4 tet t �� ��� ��

][

)(

rad

tt�

t [s] 

transient solution particular solution  

�tDin 38.7 �� 5.7° 

Natural frequencies: 

�1D=0 rad/s 

�2D=66 rad/s 

�3D=68 rad/s 

�4D=77 rad/s 

�5D=272 rad/s 

 

 

 

 

Tensioner arm oscillations 

System operating  
in region around  

natural frequencies 
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C: Results, belt drive modeling (8) 
 Case study – Tensioner arm 

• Kinematic exitation  

                                                                             

)sin(50)1(500)(4 tet t �� ��� ��

][

)(

rad

tt�

t [s] 

Tensioner arm oscillations 

�tDin 32.4 �� 2,1° 

Natural frequencies: 

 �1D=0 rad/s 

 �2D=66 rad/s 

 �3D=69 rad/s 

 �4D=77 rad/s 

 �5D=268 rad/s 

 

 

 

 

System operating  
above natural 

frequencies 
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C: Results, belt drive modeling (9) 
 Case study – Natural frequencies 

Dynamic equilibrium (Tensioner arm) �tDin=32.4° 
•Model with fixed pulleys 

•Model with tensioner Kt 

[Nm/rad] 

�1D 

[rad/s] 

�2D 

[rad/s] 

�3D 

[rad/s] 

�4D 

[rad/s] 

�5D 

[rad/s] 

50 0 64.47 65.42 76.93 268.97 

1000 0 66.95 73.61 79.73 268.77 

5000 0 65.81 76.14 118.60 267.75 

 0 65.52 76.27 276.75 �� 

�1D 

[rad/s] 

�3D 

[rad/s] 

�4D 

[rad/s] 

�5D 

[rad/s] 

0 65.52 76.27 276.75 
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C: Results, conclusion (1) 

• Preliminary literature survey concerning belts 
was done.  

• State-of-the-art for belts is defined.  

• Possible courses of action concerning belt-
drive analysis were identified.  
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C: Results, conclusion (2) 

• The analytical and semi-analytical results have 
been obtained for linear partial differential 
equations of the axially moving string and 
beam model.  

• The string model has been chosen to start the 
modeling of the belt-drive’s belt-spans with.  
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C: Results, conclusion (3) 

• Research phase accomplished:  

• Basic belt drive geometry. 
– Hub loads. 

– Belt-span natural frequencies (string and beam 
model). 

– Linear resonances due to pulleys’ eccentricity. 

– Experimental set-up for pipe transmissibility tests. 
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C: Results, conclusion (4) 

• Research phase in progress:  
• Belt-drive response with fixed pulleys 

(pulleys’ torsional vibrations).  
• Belt-drive response with tensioner (pulleys’ 

torsional vibrations).  
• Coupled longitudinal and transversal 

vibrations of the belt span.  
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C: Results, conclusion (5) 

• Application phase in progress: 
– Solver software basically defined.  
– ASCII file in, ASCII files out. 

• Computations organized by tasks (task 0 – basic geometry, task 1 – 
hub loads, ...). 

• Computation is carried out in separate thread. 

• Error handlers extensively used. 

• Progress monitor used at each task. 

• Object orientated code. 

• Very basic (console like) user interface. 

• Multi lingual messaging capabilities. 
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C: Results, conclusion (6) 

• Tensioner arm introduces geometry nonlinearities 
into the system. 

• Additional natural frequency (degree of freedom of 
tensioner arm) is very much related with tensioner 
spring constant Kt. 

• Natural frequencies are real or complex numbers. 
• In case of belt drive model with tensioner the 

calculation of natural frequencies and mode shapes is 
not possible with use of modal analysis. 

• Firs natural frequency is always equal zero. 
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C: Results, conclusion (7) 

• Research phase accomplished:  

-Belt-drive response with fixed pulleys (pulleys’ 
torsional vibrations).  

- Belt-drive response with tensioner (pulleys’ 
torsional vibrations).  
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C: Results, conclusion (9) 

• WHAT TO DO NEXT– major issues: 
�Mechanics of the dynamical contact between belt and pulley 

for different belt designs. 

�Linking together models of the belt drive with tensioner and 
belt span into one coherent model. 

�Numerical integration of the model’s response. 

�Parameter identification of the model(s). 

�Model verification. 

�Upgrading the model with viscoelasticity features (if 
necessary). 
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