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Abstract

The dynamic properties of modern products are analysed using an experi-
mental approach through the measurement of frequency-response functions
(FRFs). For an individual measurement, the coherence offers an online
check during the system acquisition. More general tools for determining
the consistency of the complete measurement set are based on a compari-
son of the FRFs or the modal shapes with a numerical model. They are
useful tools, but they rely on a comparison with a numerical model that
might not reflect the behaviour of the actual system. This paper aims to
develop a comprehensive experimental method to check the consistency of
individual measurements based on comparisons with the complete experi-
mental response model. The numerical model is introduced only to enable
the experimental model to be expanded using the System Equivalent Model
Mixing method. The entire formulation is developed in the frequency do-
main, so that the transition to the modal domain, which might remove the
physically relevant information from the system, is not required. In the fre-
quency domain, it is possible to assess the consistency of the FRF across the
entire frequency range of interest and not only in the region of the natural
frequencies. This is of great importance in the area of frequency-based sub-
structuring, where even small inaccuracies in the substructure’s FRFs (e.g.,
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the position of the anti-resonance) can lead to erroneous coupling results
due to the inversion process. The experimental case study demonstrates the
efficiency of the proposed approach. By removing the identified inconsistent
measurements, it was possible to significantly increase the accuracy of the
final coupling process.

Keywords: Measurement error, Data consistency, System equivalent
model mixing, Dynamic substructuring, Frequency domain, Expansion
process, Experimental model

1. Introduction

The analysis of structural dynamics is an essential step in the design of
high-tech mechanical systems. This generally requires the creation of vir-
tual dynamics models of the system components, which can be assembled
to evaluate the dynamic properties of the complete product. Dynamic sub-
structuring methods can be seen as a domain-independent set of tools for
combining the characteristics of the structural dynamics [1]. Efficient sub-
structuring techniques accelerate the finite-element analysis and enable the
vibro-acoustic optimization of complex systems. Numerical substructuring
methods have gained acceptance over the years; however, with increasing
product complexity the question arises as to how we can accurately, us-
ing only numerical models, represent the actual behaviour of the individual
components of the whole system.

In recent years, the structural dynamics community showed a renewed
interest in structure-coupling techniques, especially in the context of ex-
perimental applications [2]. This led to an increase in the experimental
modelling of relatively complex structures. Yet stand-alone experimental
models1 are strongly influenced by essentially independent and often imper-
fect measurements [3]. This is particularly so for the Lagrange Multiplier
Frequency-Based Substructuring (LM FBS) method, which is based on re-
sponse models and was formulated by de Klerk et al. [4]. The LM FBS
method is normally related to the experimental approach, as it is possible
to directly define the real dynamics properties based on the measured Fre-
quency Response Functions (FRFs). The method’s application to complex,
real-life engineering structures is often hindered by its notorious sensitivity

1The phrase experimental model denotes an admittance matrix that is obtained by
directly measuring the FRFs on the structure [2].
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to experimental errors [2]. It remains a challenge to extract a consistent
dynamic model performed on a limited number of essentially non-collocated
DoFs [5].

The LM FBS method often relies on the identification of an admittance
(receptance) matrix. The method involves the inverse of the experimental
admittance matrix, which is often poorly conditioned due to the experimen-
tal errors and thus prone to severe error amplification [6, 7]. In order to
overcome this problem, several researchers developed methods to improve
the consistency of the measurement with truncated singular-value decom-
position techniques [8] or by using other filtration [9] and data-smoothing
techniques [10, 11]. These methods improve the accuracy of the dynamic
coupling, but do not provide any information about the quality of the mea-
surements. In general, the measurement error can be classified into two
categories according to its type: systematic (also called bias) and random.
The systematic error is introduced by inaccuracies inherent to the system
that can involve either the observation or the measurement process. The
impact of such systematic errors on the coupling is analysed in [12, 13].
The second type of measurement error is random in nature and is referred
to as the measurement uncertainty. Random errors can be evaluated and
quantified with statistical tools [14, 15].

To evaluate the quality of repeated individual measurements, a coherence
criterion is a valid approach and offers an online check during system acqui-
sition. Using coherence it is possible to identify the measurement errors that
are random in nature [16]. More general tools to determine the consistency
of the entire measurement data set rely on a comparison of the FRFs or
mode shapes. Using the FRAC [17], MAC [18], CoMAC [19], etc. criteria,
gives some insight into identifying poorly correlated DoFs. They are useful
tools, but they are not able to identify the relationship between the mea-
surements inside the experimental data set. The relationships between the
measurements in the experimental data set, therefore, relate to the criterion
that would enable a comparison of the individual measurement with respect
to other measurements in the experimental response model. These tools only
allow a comparison with other data sets, usually obtained by a numerical
model that might not reflect the behaviour of the actual system. More-
over, by comparing the modal shapes, only the inconsistencies in a narrow
frequency range around the natural frequencies can be observed. Recently,
a new, general approach called the Data Consistency Assessment Function
(DCAF) [20] was proposed that is able to evaluate the consistency of a set
of measurements. The basic approach is to remove one particular measure-
ment from the complete set of data and then recreate that measurement
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using the expansion technique from the remaining data set. The method is
formulated in the modal domain using the SEREP expansion process. The
value of the correlation coefficient is calculated based on the matching of
mode shapes of the reconstructed and the original measurements using the
MAC criterion.

This paper presents a new approach to the identification of inconsistent
measurements in the process of dynamic substructuring. The basic idea
is similar to the DCAF method of removing a measurement from the en-
tire data set and then reconstructing it from the remaining measurement
set. Here, however, the entire formulation is developed within the frequency
domain. The expansion process is based on the System Equivalent Model
Mixing (SEMM) method that was presented by Klaassen et al. [5]. Since the
method is developed in the frequency domain, the transition to the modal
domain, which can remove the physically relevant information about the
real system, is not required. In the frequency domain it is possible to assess
the consistency of the FRFs in the entire frequency range of interest and not
only in the region of the natural frequencies. This can be done with corre-
lation criteria that compare two different FRFs for the same input-output
position, which is frequency dependent. This is particularly important in
the field of frequency-based substructuring, where even small inaccuracies
in FRFs (e.g., position of the anti-resonances) can lead, due to the inver-
sion process, to erroneous coupling results. To present the capability of
the introduced method, an experimental coupling of two simple beam-like
structures is presented. The proposed method demonstrates the possibility
of identifying small inconsistencies in the measured FRFs. Finally, we show
that by removing the inconsistent FRFs from the experimental substructure
model, it is possible to significantly improve the efficiency and accuracy of
the coupling process.

The paper is organized as follows. The following section briefly sum-
marizes the theory of the LM FBS and the SEMM methods. Next, the
identification algorithm of an inconsistent measurement is presented in Sec-
tion 3. In Section 4 an experimental validation of the proposed algorithm
is performed on a laboratory, beam-like structure. Finally, the conclusions
are drawn in Section 5.

2. Theoretical background

2.1. LM FBS method

The dynamic properties of substructures are often given by FRFs cal-
culated from the responses and excitation measurements at different sub-
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structure locations. The LM FBS method [4] enables the dynamic coupling
of admittance matrices in which the FRFs of individual subsystems are col-
lected. The equation of motion for a discrete dynamic subsystem s in the
frequency domain is:

us(ω) = Ys(ω) (f s(ω) + gs(ω)) . (1)

The vector of DoFs us(ω) represents the responses to the external force
vector f s(ω) and gs(ω) is the vector of connecting forces with the other
substructures to ensure equilibrium conditions. The admittance matrix of
the substructure is denoted with Ys(ω). To consider all n subsystems it is
necessary to assemble their admittance matrices into a block-diagonal form:2

u = Y (f + g) , where: Y =

Y
1

. . .

Yn

 , u =

u
1

...
un

 , f =

f
1

...
fn

 , g =

g
1

...
gn

 .

(2)
In the dynamic coupling process, the connections between the substructures
must be defined by the compatibility and equilibrium conditions. The inclu-
sion of both conditions is achieved with the signed Boolean matrix B. The
compatibility conditions are written using Eq. (3), which means that the
coupled structures have the same displacements or rotations at the inter-
face. It is necessary to provide such a space of DoFs that at the interfaces,
these nodes coincide. The equilibrium conditions (Eq. (4)) are introduced
by choosing the interface forces using a set of unknown Lagrange multiplier
vectors λ.

Bu = 0 (3)

g = −BTλ (4)

By combining the compatibility condition (Eq. (3)) and the equation of
motion of the uncoupled system (Eq. (2)) and taking into account the equi-
librium condition (Eq. (4)), we can determine the interface forces in the
Lagrange multiplier vector:

Bu = BY (f + g) = BY
(
f −BTλ

)
= 0 ⇒ λ =

(
BYBT

)−1
BY f .

(5)

2An explicit dependence on the frequency is omitted to improve the readability of the
notation, as will be the case for the remainder of the paper.
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The response of the coupled structure can be written as:

u = Ỹ f =
[
Y −YBT

(
BYBT

)−1
BY

]
f . (6)

The dynamic properties of the assembled system are governed by the coupled
admittance matrix Ỹ:

Ỹ = Y −YBT
(
BYBT

)−1
BY. (7)

Eq. (7) is a single-line equation of the LM FBS to couple the models and
represents the basic formulation for the whole SEMM theory.

2.2. SEMM method

System Equivalent Model Mixing (SEMM) was first introduced by Klaassen
et al. [5]. The method forms a hybrid structural dynamic model by mixing
the numerical and experimental FRFs. The procedure applies a substruc-
turing approach to expand the model dynamics contained in an overlay
model Yov onto the DoF space of a parent model Ypar [21].

The main idea of the SEMM method is shown in Fig. 1. The method
is based on the parent model (Fig. 1a), which provides the extensive DoF
set. In our case the parent model was of a numerical nature, obtained by
the direct frequency-response method, to avoid the effects of modal trunca-
tion, which usually occur in the modal superposition method. The dynamic
properties are introduced by the overlay model (Fig. 1b), which is gener-
ally obtained by experiment. To form the final hybrid model (Fig. 1d) the
dynamic properties of the parent model are eliminated with the removed
model (Fig. 1c).

(a)

+

(b)

-

(c)

=

(d)

Figure 1: Equivalent models for SEMM method; a) Parent model Ypar, b) Overlay
model Yov, c) Removed model Yrem, d) Hybrid model YSEMM.

The DoF set of the parent model is contained in the internal (i) and
boundary (b) DoFs. The boundary DoFs must overlap with the overlay
model so that the dynamic coupling can be performed, while the internal
DoFs of the parent model can be unique to its own. The equivalent models,
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appearing in the SEMM method, are arranged by separating the internal
and boundary DoFs in the admittance matrices:

Ypar ≜

[
Yii Yib

Ybi Ybb

]par
, Yov ≜

[
Ybb

]ov
, Yrem ≜

[
Ybb

]par
. (8)

The LM FBS methodology is used to form a hybrid model in the SEMM
method. First, the original parent model dynamic is removed with the
dynamic decoupling between the parent and removed model. Next, the
dynamic coupling between the parent and the overlay model, to force the
overlay dynamics in the parent model, is performed, which produces a hybrid
model. The hybrid model combines all three models in the admittance form.
The basis equation of motion for the SEMM method can be formulated as:upar

urem

uov

 =

Ypar

−Yrem

Yov

fpar

0
0

−

gpar

grem

gov

 . (9)

Following the LM FBS methodology, the vector of DoFs is u and represents
the responses to the external force vector f acting only on the parent model
and g is the vector of the interface forces between the equivalent models.
The compatibility and equilibrium conditions between the equivalent models
are defined using the following equations:

Bu = 0, (10)

g = −BT λ, (11)

where the signed Boolean matrix is defined as:

B ≜
[
Bpar Brem Bov

]
=

[
0 −I I 0
0 0 −I I

]
. (12)

Considering the compatibility (Eq. (10) and the equilibrium (Eq. 11)) con-
ditions in the basic equation of motion (Eq. (9)), together with the Lagrange
multiplier’s elimination, results in a single-line form of the SEMM method:

Y = Y −YBT
(
BYBT

)−1
BY, where: Y ≜

Ypar

−Yrem

Yov

 .

(13)
To retain the primary DoFs, the primary formulation must be reformulated
using the localization matrix [5], which results in a single-line form of the
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basic SEMM method:

YSEMM =
[
Y
]par−[

Yib

Ybb

]par
(Yrem)−1 (Yrem −Yov) (Yrem)−1 [Ybi Ybb

]par
.

(14)
The basic SEMM method also has some extensions [5] that increase its
robustness. The first extension removes any spurious peaks in the frequency
domain with an extension of the removed interface. The secondary parent
model enables us to have two parent models, where each has unique internal
DoFs. The last extension includes a trust function to steer the dynamics of
the hybrid model at low frequency to the parent model, due to the higher
accuracy of the numerical model in this region.

The ability to remove spurious peaks, which are a consequence of the
conflicting dynamics between the overlay (Yov) and the removed numeri-
cal (Ypar), is essential to improve the method’s applicability [21]. If the
removed interface is extended to all the internal DoFs, then the removed
model has the following form:

Yrem =

[
Yii Yib

Ybi Ybb

]par
. (15)

The final version of the fully extend SEMM method in a single-line notation
can be written as:

YSEMM = Ypar−Ypar
([
Ybi Ybb

]rem)+
(Yrem

bb −Yov)

([
Yib

Ybb

]rem)+

Ypar.

(16)

3. Identification of inconsistent measurements in the frequency
domain

The following section presents our new method for the identification of
inconsistent measurements that can influence the quality of the experimental
response model and with this the accuracy of the substructuring process.
The method is defined in the frequency domain and enables a consistency
check of an individual measurement with regards to the entire experimental
data set. To assess the quality of a single measurement, the algorithm relies
on the removal of one or a set of measurements and their reconstruction
based on the expansion process with the remaining measurements in the
complete experimental response model. To assess the quality of the original
measurement, a frequency-dependent correlation is calculated between the
reconstructed and the original measurements.
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The expansion process is performed using the SEMM method [5], where
SEMM-expanded DoFs are used to reconstruct the measurement at the given
location of an actual measurement [21]. In order to perform the SEMM
expansion, a corresponding numerical model must be established that serves
as the parent model. The numerical model must include at least the DoFs
included in the experimental (overlay) model. Both models should have the
shape of a rectangular receptance matrix. In extreme cases this can be either
only one row or one column, or it may be a square matrix.

A schematic representation of the method is shown in Fig. 2, where for
the sake of simplicity, four data points are considered in the experimental
model and the corresponding numerical model consists of twenty data points.
For a better understanding of the identification algorithm, only one row of
the receptance matrix is used in the presented example. The response was
measured at only one point, and the structure was excited for all four points
to construct the experimental model and at all twenty points for the nu-
merical model. The locations of measurement points must coincide with the
discretization points of the numerical model. In each iteration, the removed
measurement is reconstructed based on all the remaining measurements in
the complete data set using the SEMM expansion. The reconstructed FRF
includes the dynamics of the real structure combined with the numerical
model. Let us assume that in the first step of the method the measurement
at point 1 is removed so that the overlay (experimental) model contains only
measurements at the locations of points 2-4 (Fig. 2). The parent (numerical)
model contains all twenty DoFs and remains the same throughout the whole
iteration process. With the SEMM method, the dynamic properties of the
overlay (experimental) model are expanded to all the DoFs included in the
parent (numerical) model. This also includes point 1, at which the mea-
surement was removed from the overlay model. If the original measurement
is consistent, it should correlate well with the reconstructed measurement
based on the SEMM-expansion process, which is then repeated for all the
remaining measurement points in the experimental model (points 2-4).

After the expansion process, the comparison between all the recon-
structed FRFs and their original experimental counterparts is made. If
the identification criterion shows a reasonable correlation between the ex-
perimental and the associated reconstructed FRF, it can be considered as
a consistent measurement and remains in the experimental set. However,
if the measurement proves to be inconsistent it will be completely removed
from the experimental set. The comparison between the reconstructed and
the original measurements can be performed using a variety of criteria, for
instance, the coherence criterion compares two different FRFs for the same
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Figure 2: Proposed identification algorithm for the identification of inconsistent
measurements in the frequency domain.

input-output position. The last step of the algorithm is to determine the lim-
iting value of the identification criterion that enables the separation between
the consistent and inconsistent measurements (Fig. 2). Since the basic as-
sumption of the approach proposed in this article is that the majority of the
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measurements are consistent, it is somehow clear that the limit of coherence
should be set to the value where the majority of the measurement remains
in the experimental response model. Taking into account this assumption,
the limit is set as high as possible. It should be emphasised here that the
value of the coherence is the trade-off between a high-quality measurement
and the extent of the dynamics information introduced into the system by
the measurement. More information regarding the identification criterion is
presented in the next section.

The proposed identification algorithm for the general case of a multidi-
mensional experimental matrix can be summarized as follows:

(STEP 1) Define the experimental and numerical input models of the anal-
ysed structure with complementary frequency points.

YExp.
m×n and YNum.

p×r where: m ≤ p and n ≤ r

The parameters m and p refer to the number of rows (response
locations) in the experimental or numerical model, respectively,
while the parameters n and r stand for the number of columns
(excitation locations) in the experimental or numerical model.

(STEP 2) The iterative process of removing the measurement points and re-
constructing them based on the SEMM-expansion process. The
use of the algorithm for the multi-row or multi-column experi-
mental receptance matrix is presented in Fig. 3.

Using Eq. (16) to combine YExp.
(m−1)×n or YExp.

m×(n−1) with YNum.
p×r

In each step of the iterative SEMM procedure, the entire row or
column of the experimental receptance matrix is removed. This
meets the requirement of the SEMM method that the overlay
model has the shape of the rectangular matrix. Thus, multi-
ple measurements are reconstructed simultaneously for each sub-
step. It makes sense to choose such a strategy for removing the
measurements, in which the reconstruction in each sub-step is
based on as many remaining measurements as possible.

(STEP 3) Calculate the correlation criterion that compares the reconstructed
and measured FRFs for the same input-output position. In the
general case of the multidimensional experimental receptance ma-
trix, it is a 3D bar chart, as shown in Fig. 3.

(STEP 4) Determination of the limit value of the identification criterion and
the removal of inconsistent measurements from the experimen-
tal response model. The identified inconsistent measurements
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Figure 3: Strategy to remove measurements during the iterative SEMM process when
analysing a multi-dimensional experimental response matrix.

can also be corrected by an expansion [21] or smoothing proce-
dures [22].

If a specific measurement is identified as inconsistent, it can either be omitted
or reconstructed using the proposed SEMM-expansion process. However,
we should take into account that the reconstruction is performed using all
the remaining consistent measurements, so no new information is introduced
into the dynamics response model. Therefore, even if the inconsistent DoF is
reconstructed and not omitted from the experimental model, this would not
improve the experimental response model’s consistency. The reconstruction
of the omitted DoF only makes sense when the response at the given DoF
is required in the subsequent procedure.

3.1. FRF comparison techniques

To correctly compare the two FRFs, a comprehensive criterion must be
introduced that considers the comparison across the entire frequency range,
both in terms of amplitude and phase. For many years, it has been com-
mon practice to visually compare the FRFs, and in this way assess the level
of their correlation [23]. However, in order to objectively assess the cor-
relation, more advanced criteria were introduced. The basic method for
comparing functions in the frequency domain is the frequency-response as-
surance criterion (FRAC) [17] and the frequency-amplitude assurance crite-
rion (FAAC) [24] method, where the correlation between the FRFs is repre-
sented by a scalar value. More advanced criteria that enable a comparison
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of the FRFs versus frequency were developed in the field of modal updat-
ing [24, 25]. In this field the so-called Local Amplitude Criterion (LAC) [24]
was introduced that enables a comparison of a single measured FRF and its
recreated counterparts versus frequency:

LACij(fk) =
2 |Y Rec.∗

ij (fk)Y
Exp.
ij (fk)|(

Y Rec.∗
ij (fk)Y

Rec.
ij (fk)

)
+
(
Y Exp.∗
ij (fk)Y

Exp.
ij (fk)

) (17)

The variable Y Rec.
ij stands for the reconstructed measurement and Y Exp.

ij

represents the real measurement. With ∗ we denote the complex conjugate.
The characteristic number for a comparison with the other measuring points
is the average value of the match across all frequencies (N represents the
number of considered frequency points):

LACij =
1

N

N∑
k=1

LACij(fk) . (18)

The LAC criterion makes it possible to compare the FRFs only in terms of
amplitude [26]. For this reason, Seijs et al. [27] used a coherence criterion
function to evaluate the reciprocity of two FRFs. It enables a comparison
in both the amplitude and phase spectra.

cohij(fk) =

(
Y Rec.
ij (fk) + Y Exp.

ij (fk)
)(

Y Rec.∗
ij (fk) + Y Exp.∗

ij (fk)
)

2
(
Y Rec.∗
ij (fk)Y

Rec.
ij (fk) + Y Exp.∗

ij (fk)Y
Exp.
ij (fk)

) (19)

The coherence criterion allows us to estimate the correlation of two FRFs
versus the frequency. To enable an overall correlation between the FRFs,
an average coherence over the considered frequency range is introduced:

cohij =
1

N

N∑
k=1

cohij(fk) . (20)

Both methods, the LAC and the coherence criterion, give similar results
when the average value of a given criterion is compared. The difference is
notable when the values of the criteria are plotted versus the frequency, as
will be presented in the experimental case study.

For a credible identification, it must be assumed that in the experimen-
tal model the majority of the measurements are consistent. If this is not
the case, then the reconstruction of a particular measurement is based on
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erroneous FRFs and the reconstruction is meaningless. The algorithm relies
on the SEMM-expansion method, hence it inherits a limitation to the linear
and time-invariant systems [1]. If any of these assumptions are violated,
the SEMM-expansion process would be inconsistent. Both identification
criteria enable the detection of measurements containing a random error.
In addition, systematic errors can be identified, such as inaccuracies in the
positioning of sensors, the incorrect calibration of measurement equipment,
and imperfect impact/excitation locations. The proposed algorithm can also
be used to detect measurements contaminated by cable problems, clipping,
misalignment of the transducer, or incorrectly labelled measurements.

4. Experimental case study

The applicability of the proposed method for the identification of incon-
sistent measurements is demonstrated on a simple beam structure with a
rectangular cross-section. The beam A-A represents the main system as-
sembled from two equal beams A (Fig. 4). Since the measurements were not
acquired at the interface DoFs, they were reconstructed using the SEMM-
expansion process. In this way, a hybrid model of beam A was constructed.
The final coupling was thus performed with the two identical hybrid models
of beam A using the LM FBS method. First, the experimental response
model and the corresponding numerical model of beam A must be obtained
(Table 1). On beam A, 26 equidistant measuring points were used (Fig. 4).

L h

t

1 24222 4 25233 5 ... 26y

z x

Location of excitation

Location of response

Figure 4: Schematic presentation of beam A.

Table 1: Parameters of beam A.

Parameter Value

L 300 mm
h 40 mm
t 12 mm
E 205 GPa
ρ 7820 kg/m3

For the numerical model, the 1D finite-element method was applied, fol-
lowing Timoshenko’s beam theory. The direct-force method without damp-
ing was applied to generate FRFs in the range between 0 and 7000 Hz with
a frequency resolution of 1 Hz. The entire beam was discretised with 250
elements, whose 26 nodal coordinates coincided with the positions of the
measurement points (Fig. 5). The FRFs in the numerical model were deter-
mined for all combinations of the excitation with the force in the y-direction
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1 242220 212 4 25233 5 6 7 8 9 10 1511 1612 17 2613 1814 19

y

z
xzrot

ytran

Observable node in numerical response model

Node of original discretization for the finite element models mesh

13 14

Figure 5: Numerical model of the analysed beam A.

and a torque about the z-axis. The translational response was captured in
the y-direction and the rotation about the z-axis for all 26 points, consider-
ing free-free boundary conditions. The numerical model results in a square
receptance matrix. For the purpose of the identification algorithm, the par-
ent model consisted of only one row in the numerical receptance matrix, as
depicted in Fig. 6.
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1 12 2... ...5 5... ...25 2526 26
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e

Numerical model
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Figure 6: Schematic representation of the numerical receptance matrix.

In the experimental setup, the free-free boundary conditions were ap-
proximated by placing the beam on polyurethane foam blocks. The rowing
force excitation was performed in the y-direction for all 26 points, simultane-
ously, the translational response was measured at point 5 in the y-direction,
as depicted in Fig. 4. The algorithm and the coupling process could be per-
formed even if we were to choose a different or even multiple reference points
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on the structure. An impulse excitation was applied using a modal hammer
with a hard metal tip (Fig. 7a), while the response was measured with a uni-
axial accelerometer (Fig. 7b). During the measurement, six excitations were
performed at each measuring point. Here it should be noted that no prede-

(a) (b)

Figure 7: Photograph of the measurement equipment; a) Modal hammer PCB 086C03,
b) Uni-axial accelerometer Dytran 3097A2T.

fined or intentional errors were introduced into the experimental response
model.

The experimental model consisted of one row of the receptance matrix.
For the measurement consistency identification algorithm, it would be suf-
ficient to obtain an identically shaped receptance matrix of the numerical
model. However, since the efficiency of the process is demonstrated by the
final coupling of the two beams A with the LM FBS method, a square recep-
tance matrix, including rotational DoFs, has to be included in the numerical
model.

4.1. Identification of inconsistent measurements

To identify the inconsistent measurements, the proposed expansion method
was applied at the locations of the measured points. One row, including only
translational responses, was extracted from the full numerical model to es-
tablish the parent model (Fig. 6).

In the first part of the inconsistent-measurement identification algorithm,
the iterative process is applied to reconstruct the removed FRFs based on
the SEMM-expansion process. Next, the average coherence between the re-
constructed measurements and the experimental counterparts is calculated.
The coherence diagram of the analysed beam is shown in Fig. 8, where the
boundary-coherence value was chosen to be 0.90. It should be emphasized
that the value of the limit coherence criterion is case-specific and should
be carefully selected with respect to the average coherence results. In the
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Figure 8: Average value of the coherence and LAC criterion.
( ) - Consistent Measurement Coherence, ( ) - Inconsistent Measurement Coherence,

( ) - Boundary Coherence, ( ) - LAC

presented case, the identification algorithm was used to provide a consis-
tent experimental model for the coupling process, which is very sensitive to
experimental errors. For this reason, a high boundary coherence must be
chosen, so that only the highest-quality measurements will be identified as
consistent. In addition to the coherence criterion, the average value of the
LAC criterion is also presented. It can be observed that the average LAC
criterion results in similar correlation values between the reconstructed mea-
surements and their experimental counterparts. By adopting the suggested
limit, the measurements at points 15 and 24 are identified as inconsistent
and should be removed from the existing experimental data set.

In order to confirm the selected boundary-coherence value, a statisti-
cal analysis using the box-plot method [28] was applied to the frequency-
dependent coherence values. A box plot is a method of displaying statistical
characteristics with quarters, where no statistical distribution is assumed.
The basic element of the box plot is the median that delimits the lower from
the upper half of the values in the data set. In our case a particular data
set represents the coherence values at individual frequencies for a specific
measuring point. The first quarter halves the lower half of the data set. It
divides the complete data set so that 25% of the values are smaller and 75%
larger. The third quarter delimits the upper half of the data set and thus
represents a value, for which 75% are smaller and 25% larger.

Fig. 9 shows the interquartile range, a measure of the probability dis-
tribution. It stretches between the first and third quarters and represents
an area where 50% of all the values are located. The line inside the box
represents the median or second quarter. A large span of the interquar-
tile range indicates significant changes in the coherence values within the
observed frequency range for a given measurement.
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Figure 9: Representation of the coherence criterion in box-plot form, including only the
interquartile range.

( ) - Consistent Measurement, ( ) - Inconsistent Measurement

It is evident (Fig. 9) that the interquartile ranges for points 15 and 24
are significantly larger than all the other points. By closely inspecting the
FRFs and the coherence values of the reconstructed measurement and its
experimental counterpart (Fig. 10), it becomes clear that the main difference
is in the position of the anti-resonance regions. It can also be observed that
the analysed FRFs correlate well in the resonance regions. The incorrect
prediction of the measured FRFs in the anti-resonance regions is particularly
problematic during the coupling process due to the inversion of the FRFs
in the formulation. As shown in the continuation of the paper, this kind
of inconsistent measurement can lead to an incorrect prediction of the final
coupling results and should be omitted from the measurement set. Since
the problem in both measurements lies in the misalignment of the anti-
resonance regions, it is possible to relate the measurement error to a small
misalignment of the impact or measuring location [2]. However, it should
be noted that the aim of this paper is not to identify the nature of the
measurement error, but to identify the inconsistent measurements in the
experimental response model.
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Figure 10: FRFs of inconsistent measurements and their reconstructed counterparts;
a) point 15, b) point 24.

( ) - Measurement, ( ) - Numerical model, ( ) - SEMM reconstruction
( ) - coh, ( ) - LAC
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To demonstrate the difference between the consistent and inconsistent
measurements, the comparison of the reconstructed measurement and its
experimental counterpart is also presented for point 12 (Fig. 11). At this
point, a high average coherence value and a low span of the interquartile
range are observed, which indicates that the measurement is consistent. By
closely inspecting the FRFs, it is obvious that the reconstructed measure-
ment and its experimental counterpart correlate well in the resonance and
the anti-resonance regions. Based on these observations it is evident that
the box-plot method gives additional information about the average value
of the coherence criterion, which represents a powerful tool to identify an
inconsistent measurement in the experimental response model.
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Figure 11: FRF of consistent measurement and its reconstructed counterpart at point 12.
( ) - Measurement, ( ) - Numerical model, ( ) - SEMM reconstruction

( ) - coh, ( ) - LAC

Based on the presented example, the advantage of the proposed formu-
lation for the identification of inconsistent measurements in the frequency
domain becomes more evident. Since the measured FRFs are well aligned
with the reconstructed counterparts in the region of the natural frequen-
cies, this would require the use of advanced modal identification methods to
identify misalignments in the FRFs between the natural frequencies. How-
ever, the presented algorithm makes it possible, by using only the frequency
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domain, to evaluate the FRFs in the entire frequency range, including the
regions between the natural frequencies. As shown in this example, even
small inaccuracies in the position of the anti-resonance can be detected,
which makes it possible to identify the inconsistent measurements in the
experimental response model. As shown in the next section, this is of great
importance for a reliable substructuring process.

4.1.1. Rejection performance of the proposed algorithm

In the previous section, the algorithm’s performance was demonstrated
using an ”accurate” numerical model and an experimental response model
with no intentionally imposed inconsistent measurements. Here, the ef-
ficiency of the algorithm-rejection performance is analysed by identifying
inconsistent measurements using a less-accurate numerical model. In ad-
dition, in the experimental response model, the intentionally inconsistent
measurements were introduced by considering sensor misalignment, setting
the wrong gain of the sensors and random errors due to the presence of
noise.

To obtain a less-accurate numerical model, the material parameters
were slightly modified (Table 2) and unrealistic damping values were intro-
duced by setting the Rayleigh proportional damping coefficient β to a high
value. The comparison of experimental, numerical and reconstructed FRFs

Parameter Value

L 300 mm
h 40 mm
t 12 mm
E 215 GPa
ρ 7800 kg/m3

β 10−6 [/]

Table 2: Modified parameters of less-precise numerical model of beam A.

is shown in Fig. 12. The numerically obtained FRF is misaligned in terms of
position and amplitude in the resonance regions. In the region of the third
and fourth natural frequencies, this shift is higher than 100 Hz. Despite the
introduction of the erroneous numerical model, the reconstructed FRF using
the SEMM-expansion method agrees well with the experimentally obtained
FRF. In the resonance regions, in particular, the positions of the peaks and
the amplitudes are well aligned with the experimentally obtained FRF.

To demonstrate the robustness of the proposed algorithm, the same ex-
perimental response model presented in Section 4.1 was used in conjunction

21



10−10

10−8

10−6

10−4

10−2

|Y
(f

)|
[m

/
N

]

Response point: 5
Excitation point: 12
coh=0.983

0 1000 2000 3000 4000 5000 6000 7000

f [Hz]

0

1

co
h

o
r

L
A

C
[/

]

Figure 12: FRF comparison of measurement at point 12 and its reconstructed
counterpart with FRF from a numerical model of poorer quality.

( ) - Measurement, ( ) - Numerical model, ( ) - SEMM reconstruction
( ) - coh, ( ) - LAC

with a less-accurate numerical model. From the obtained coherence diagram
in Fig. 13 it is evident that even with a less-accurate numerical model, the
same measurements can be identified as inconsistent. Nevertheless, by com-
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Figure 13: Coherence diagram in case of poorer numerical model.
( ) - Consistent Measurement Coherence, ( ) - Inconsistent Measurement Coherence,

( ) - Boundary Coherence, ( ) - LAC
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paring the coherence values (Fig. 8 and Fig. 13), it is clear that the use of the
less-precise numerical model influences the accuracy of the SEMM-expansion
process. For example, by inspecting the coherence values in point 3 (Fig. 13),
it becomes apparent that the value is coming closer to the rejection limit
and could potentially be identified as an inconsistent measurement. In these
cases, it is recommended that this possible inconsistent measurement should
be deleted rather than left in the experimental response model.

Additionally, the efficiency of the rejection process was examined by
intentionally introducing the errors into the experimental response model.
All the anomalies introduced at a given measurement point are detailed in
Table 3. The proposed algorithm for identifying inconsistent measurements
was performed using a less-accurate numerical model (Table 2).

Point Error

4 erroneous sensor sign
8 swapped measurement from point 9 (wrong sensor wiring)
9 swapped measurement from point 8 (wrong sensor wiring)
11 erroneous sensor gain
19 excessive random errors (noise) in the measured signal

Table 3: Locations and types of errors intentionally introduced into the experimental
model.

The obtained coherence diagram is shown in Fig. 14 and the comparison
between the measured numerical results and the reconstructed FRF for all
points with an imposed error are presented in Fig. 15. It is clear that all
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Figure 14: Identification of inconsistent measurement due to all possible errors.
( ) - Consistent Measurement Coherence, ( ) - Inconsistent Measurement Coherence,

( ) - Boundary Coherence, ( ) - LAC
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Figure 15: FRFs contaminated with different types of errors; a) erroneous sensor sign,
b) swapped measurement from point 9, c) swapped measurement from point 8,

d) erroneous sensor gain, e) excessive random errors.
( ) - Erroneous measurement, ( ) - Correct measurement, ( ) - Numerical

model, ( ) - SEMM reconstruction
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the measured points with intentionally introduced errors have significantly
lower coherence values. By observing the coherence and LAC criteria at
the same time, the inconsistent DoFs can be seen even more clearly. The
measurement at point 4 contained an error of the wrong sign, which is not
visible in the amplitude spectrum (Fig. 15a); therefore, this error cannot
be detected with the LAC criterion as it is not phase sensitive. However,
using the coherence criterion it is possible to identify this anomaly and to
mark the measurement as inconsistent. By considering the measurement
at point 11 where the faulty sensor gain was imposed (Fig. 15d), the LAC
criteria, which correlate directly with the FRF amplitude, turn out to be
more sensitive. However, even when using the coherence criterion it was
possible to identify this type of error.

The measured FRFs at points 8 and 9, shown in Fig. 15b and 15c, are
only 12 mm apart and were intentionally swapped (wrong sensor wiring).
The proposed algorithm was able to detect this type of wrong sensor wiring
at both the swapped locations. Finally, the noisy measurement (contami-
nated with random error) at point 19 (Fig. 15e) could also be detected with
both criteria. From the LAC and coherence criterion this measurement can
be clearly identified as inconsistent.

Finally, we can conclude that the proposed algorithm proves to be effi-
cient even when the numerical model is not of high accuracy. In addition, it
has been shown that the proposed algorithm can successfully detect different
types of measurement errors.

4.2. Dynamic coupling

To show the efficiency of the proposed method for the identification of in-
consistent measurements, two identical beams A were coupled using the LM
FBS method to form a dynamic model of the coupled beam A-A (Fig. 17).
The entire substructuring process is schematically presented in Fig. 16. The
models used as input data are taken from Section 4.1. For the numerical
model, a higher-quality form was used, while the experimental model was
represented by measurements without intentionally added errors. First, the
proposed algorithm for the identification of inconsistent measurements was
applied to the system. Based on this algorithm, the measurements at points
15 and 24 were recognized as inconsistent (Fig. 8). Afterwards, two sepa-
rate coupling processes were performed. The first coupling process included
only consistent measurements, which excluded the measurements at points
15 and 24. The second coupling process included all the measurements in
the experimental response model. In both cases, a full receptance matrix of
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Figure 16: Schematic presentation of the coupling formulation.

beam A had to be obtained. The presence of rotational DoFs requires a ro-
tation measurement and torque excitation, which proves to be a problematic
process [29], thus some methods for an estimation of the rotational FRFs
were developed [30]. For both coupling procedures, the SEMM-expansion
process was performed based on the selected measurement set and the full
numerical model.

Two identical beams A were coupled using the LM FBS method (Eq. (7))
proposing a rigid connection at the interface (Fig. 17). Hence, translation
in the y-direction and the rotation about the z-axis were coupled at the
interface of both beams A. To validate the coupling results, the reference
experimental dynamic model of the coupled beam A-A was obtained inde-
pendently. The excitation was performed at all 51 points in the y-direction,
while the response was measured at point 5 (Fig. 17).

2·L

1 24 28 502 4 25 29 5123 27 493 5 ... ...26 48y

z x

Location of excitation

Location of response Rigid connection

Figure 17: Schematic representation of the coupling process of beams A to the obtained
coupled beam A-A.

An example of the coupled structure’s dynamic response is shown in
Fig. 18. The reference measurement was obtained by actually measuring
the FRFs on the beam A-A. If all the measurements are considered in the
coupling process, including the inconsistent ones, significant deviations from
the reference measurements can be observed. The misalignment in terms of
the amplitude and the position of the natural frequencies can be identified.
Some natural frequencies cannot even be observed in the coupled dynamics
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Figure 18: FRFs of coupled system; a) point 5, b) point 15.
( ) - Reference Meas., ( ) - SEMM - consistent Meas. ( ) - SEMM - all Meas.
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response (e.g., the natural frequency at 6800 Hz). The effect of measurement
inconsistency on beam A at point 15 in the frequency range between 2000
and 4000 Hz and above 5000 Hz (Fig. 10a) is reflected in the FRFs of the
coupled system. In these regions, the greatest deviations from the reference
measurement can be observed.

If only consistent measurements are considered in the coupling process a
fairly good matching with the reference FRFs can be identified. Particularly
in the region between 2000 and 4000 Hz and above 5000 Hz, a better pre-
diction of the coupled systems’ dynamics response can be observed. All the
natural frequencies can be identified and the position of the anti-resonance
regions and their shape agree well with the reference measurement. An er-
roneous coupling result can be observed in the range of the first natural
frequency (between 150 and 200 Hz) of the coupled system. The cause of
the error stems from the characteristics of the experimental model, which
is usually slightly less accurate in the lower frequency range, due to the dy-
namic properties of the experiment setup and the measuring range of the
measuring equipment used. The solution to this problem is already included
in the SEMM method, by introducing a trust function [5]. It makes it possi-
ble to shift the dynamic source to either the parent or overlay model. At low
frequencies the provider of the dynamic properties is the numerical model,
while the experimental model contributes the dynamic properties at higher
frequencies. In this way, a more precise coupling is achieved even at lower
frequencies.

To compare the overall agreement between the reference measurements
and both coupling processes, an average coherence criterion versus the fre-
quency is plotted (Fig. 19). The average criterion is obtained by computing
the average value of all the measuring points at a given frequency. For the
general case, it is calculated as:

coh(fk) =
1

p r

p∑
i=1

r∑
j=1

cohij(fk) , (21)

where p represents the number of all the rows and r the number of columns of
the response matrix of the coupled system. In our case, only the translational
response at one point (i = 5) was considered experimentally (p = 1), which
was deduced from the force excitation at all (r = 51) the points of the
coupled system. Based on this representation of the coherence criterion, it
can be observed that the value of the coherence criterion is higher for the
entire frequency range. In particular, significantly higher coherence values
can be observed in the range between 2000 and 4000 Hz and above 5000 Hz
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Figure 19: Average coherence criterion for all the measuring points versus frequency.

if the coupling is performed without inconsistent measurements. Based on
the representation of the overall coherence value given by the equation:

coh =
1

N

N∑
k=1

coh(fk) (22)

it is evident that if all the measurements are included in the coupling process
the value is equal to 0.78. However, if the inconsistent measurements are
excluded, the average coherence value increases to 0.89.

This experimental example shows that even a small number of inconsis-
tent measurements can strongly influence the accuracy of the coupling pro-
cess. Therefore, inconsistent measurements should be identified and omitted
from the experimental response models. Finally, it is better to eliminate a
potentially good measurement than to leave an inconsistent measurement
in the experimental response model.

5. Conclusion

This work provides a framework for the identification of inconsistent
measurements in the general experimental response model. Here, the ap-
plication of the method on the frequency-based substructuring process is
demonstrated. The algorithm identifies the inconsistent measurement based
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on its comparison with the entire experimental response model. The method
relies on removing the measurement from the experimental model and re-
constructing it based on the remaining measurement set using the SEMM-
expansion process. The developed equivalent numerical model of the system
served only as part of the SEMM-expansion process and is not used for di-
rect comparisons with the experimental model. Based on the correlation
criterion between the reconstructed and the original measurement it was
possible to identify an inconsistent measurement.

According to the presented experimental case study, it is evident that the
identification of an inconsistent measurement is of great importance for an
efficient and accurate substructuring process. It is shown that the measured
sub-component FRF should be consistent across the entire frequency range
and not just in the region of the natural frequencies. Since FRFs are used
in the coupling process, even small inconsistencies can lead to an incorrect
prediction of the coupled system’s dynamics response.

Finally, it should be noted that the limit value of the correlation criterion
should be selected conservatively, especially if the algorithm is used in the
context of dynamic coupling. A high match limit will thus identify all the
inconsistent measurements with greater certainty, which might include some
good measurements. The absence of one potentially good measurement
in the experimental model has very little effect on the coupling accuracy,
while the presence of only one inconsistent measurement greatly reduces the
coupling accuracy.
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