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Abstract

Modal substructuring is an established subdomain of dynamic substructuring in

which the handling of multi-point connections between subcomponents proves

to be a problematic task. This is particularly the case with experimental models,

where even small inconsistencies in the interface dynamics can greatly affect the

accuracy of the substructuring process. An established solution to this problem

is based on the projection of physical interface motion on the modal basis of

one of the substructures. Although both the dimension and the origin of the

projection basis prove to have a great impact on the accuracy of the substruc-

turing prediction, the established procedures do not provide a general criterion

for their appropriate selection. The aim of this paper is to propose an alter-

native weakening approach based on singular value decomposition (SVD) that

enables the construction of a vector space and the establishment of a criterion

for the selection of its dominant components. Considering two substructures

involved in a certain step of a substructuring procedure, SVD is performed

on the interface-related components of the substructures’ concatenated modal

bases. The dominant left singular vectors, therefore, embody the interface dy-

namics of both substructures and provide a consistent orthonormal basis for the

∗Corresponding author
Email address: gregor.cepon@fs.uni-lj.si (Gregor Čepon)
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constraint-weakening process. The proposed empiric criterion for estimating the

required vector-space dimension is based on the magnitude of singular values.

The efficiency of the proposed methodology is presented in comparison to the

established modal-constraint approach with three numerical examples and an

experimental-analytical transmission simulator coupling procedure. It is shown

that the proposed singular vector constraint approach in conjunction with the

criterion to estimate the weakening basis size, provides a consistent and reliable

substructuring procedure.

Keywords: singular vector constraints, experimental-analytical

substructuring, component mode synthesis, experimental modal analysis

1. Introduction

Dynamic substructuring (DS) is a well-established field in structural dynam-

ics. DS methods are used to predict the dynamic response of a structure, ob-

tained by a sequence of coupling and/or decoupling steps between the individual

subcomponents with known dynamic properties. These properties can be char-

acterized in several different ways, among which the three general approaches

(spatial, spectral, and state) can be distinguished [1]. Several difficulties can

arise when experimental models are introduced to the substructuring proce-

dure [2], due to the inevitable experimental errors, limited testable frequency

band, etc. Therefore, several recent studies explored different approaches to

analyse [3, 4] and reduce [5–8] the impact of experimental errors.

Representation within the modal domain often proves to be a convenient form

of a substructure’s spatial dynamic characterization, based on its modal pa-

rameters. Modal substructuring, also referred to as component-mode synthe-

sis (CMS), is widely used in the realm of numerical simulations and provides

quality substructuring predictions in real-world applications with a complex

geometry [9] and pronounced damping [10]. In real-life applications, compo-

nents are often bonded with multi-point or continuous connections, which are
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particularly problematic for substructuring predictions, as some of the physi-

cal constraints are often redundant. Even in numerical simulations, only due

to the discretization, this can lead to interface locking and consequently to an

erroneous substructuring prediction. This issue is even more pronounced when

experimental models are considered in the substructuring procedure due to the

unavoidable measurement errors. This problem can be reduced by weakening

the compatibility and equilibrium conditions, which is typically done using a

suitable mode-shape-based projection basis [5].

Extensive research has been conducted in the field of experimental-analytical

substructuring with multi-point connections. In [5, 11, 12] the concept of the

transmission simulator method (TSM) was presented and a weak modal con-

straint formulation (modal constraints for fixture and subsystem - MCFS or

simply modal constraints - MCs) was introduced. Later, the TSM was refor-

mulated to enable direct implementation in finite-element software [13]. Fur-

thermore, the phenomenon of negative mass and stiffness within the modal

decoupling procedure was investigated in [14]. Within the TSM a truncated set

of flexible fixture’s mode shapes is used to satisfy the physical constraints in

a least-squares sense. When applying modal constraints, both the selection of

the modal basis as well as the number of contained mode shapes considered for

the weakening process, can significantly affect the quality of the substructuring

prediction. In addition, the modal basis embodies the global behavior and can

therefore contain information that is unnecessary or redundant in terms of in-

terface dynamics. A general guideline for determining the truncation limit is

to select it in or near the frequency band of interest [5]; however, the appro-

priate selection seems to be very case-specific. As an alternative to the MCFS,

singular vector constraints are briefly introduced in [1], based on the Singular

Value Decomposition (SVD) of a coupled substructure-fixture modal response.

Following this idea, an admittance-based singular vector constraint approach

was proposed in our previous work [15].

In this paper a novel approach to singular vector constraints (SVCs) is pre-

sented, which can also be interpreted as an extension of the established modal
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constraints. Instead of using the modal basis of a single substructure, the modal

bases of two substructures are considered in the weakening process for each

step in the substructuring procedure. Concatenated interface-related compo-

nents of the modal bases are submitted to SVD. The resulting dominant left

singular vectors represent an orthonormal vector space that embodies the inter-

face motion of both substructures and seems to represent a consistent basis for

the constraints-weakening process. Since the weakening basis is obtained using

SVD, it is also possible to establish an empirical criterion based on the magni-

tude of singular values, to estimate the number of singular vectors required to

describe the dominant interface motion. Note, that within the MC approach

there is no general criterion available to select the optimal modal sub-basis for

the constraints-weakening process. Compared to the established solutions, such

an approach proves to have certain advantages. The generated weakening basis

is richer and does not contain any redundant contributions, that might lead

to interface locking. By an appropriate selection of the dominant vectors, the

insignificant or noise-induced contributions are discarded.

The applicability of the proposed approach is demonstrated on three direct-

coupling numerical examples, considering various system parameters. The sin-

gular vector constraint concept is also applied to the TSM and an experimental-

numerical study is performed. The results demonstrate the efficiency of the pro-

posed weakening procedure using singular vector constraints. Compared to the

established modal-constraint approach, equivalent or better accuracy, as well as

greater robustness, of the substructuring prediction can be achieved.

This paper is organized as follows. The next section summarizes the basic

modal substructuring theory, followed by the presentation of weak constraint

formulations and singular value decomposition. In Section 3 the proposed sin-

gular vector constraints methodology is outlined. In Section 4 the applicabil-

ity of the proposed methodology is demonstrated and the TSM experimental-

analytical study is presented in Section 5. Finally, conclusions are drawn in

Section 6.
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2. Theoretical background

2.1. Component mode synthesis - Primal formulation

In this section the basic theory of modal substructuring is presented, follow-

ing the notation in [2]. For each substructure, the linear equations of motion in

the physical domain can be written as1:

M(s) ü(s) + C(s) u̇(s) + K(s) u(s) = f (s) + g(s) , (1)

where M(s), C(s) and K(s) are the mass, damping, and stiffness matrices of the

substructure s. Vector u denotes the substructure’s degrees of freedom, f (s) is

the external force vector, and g(s) is the vector of connecting forces with other

substructures. Vectors u̇(s) and ü(s) denote the first and second time derivatives

of the degrees of freedom, respectively. The equations of motion for a system of

n substructures, for which the coupling or decoupling is to be performed, can

be written in a block-diagonal form2:

M ü+ C u̇+ Ku = f + g , (2)

where:

M = diag
[
M(1), . . . ,M(n)

]
, C = diag

[
C(1), . . . ,C(n)

]
, K = diag

[
K(1), . . . ,K(n)

]
,

and u =
{
u(1), . . . ,u(n)

}T
, f =

{
f (1), . . . ,f (n)

}T
, g =

{
g(1), . . . , g(n)

}T
.

The corresponding compatibility and equilibrium condition can be written as:

Bu = 0 , (3)

LT g = 0 , (4)

where the B matrix operates on the interface degrees of freedom and the L

matrix is localizing the interface DoF in the global dual set of DoF. Assuming

conforming discretizations of the interface, B is a signed Boolean matrix and L

1For the sake of simplicity the explicit time dependency is omitted.
2Note, that if the decoupling of a substructure is required, the corresponding mass, damping

and stiffness matrices in the global block-diagonal equation are to be assigned as negative.

5



is a Boolean matrix. The corresponding compatibility and equilibrium condi-

tion formulation is considered to be exact/strong. The system of Eqs. (2)–(4)

describes the dynamic properties of the coupled/decoupled system of compo-

nents. From this set of equations, the coupled system can be obtained in either

the primal or dual formulation [2]. Within this paper, only the primal substruc-

turing formulation in the modal domain is considered.

Modal substructuring or CMS refers to the methods where the substructures’

dynamic properties are approximated in a reduction basis. The transforma-

tion of the physical DoF is performed by a reduction matrix R, which typically

contains some type of components’ mode shapes:

u ≈ Rη , (5)

where R = diag
[
R(1), . . . ,R(n)

]
and η is a vector of generalized coordinates.

The coupled/decoupled system of Eqs. (2)–(4) in the modal domain can be

expressed as3:

Mm η̈ + Cm η̇ + Km η = fm + gm , (6)

Bm η = 0 , (7)

LT
m g = 0 , (8)

where:

Mm = RT M R, Cm = RT C R, Km = RT K R, fm = RT f , gm = RT g,

and

Bm = B R, Lm = null [Bm].

3When mass-normalized mode shapes are considered as a reduction basis, the following

relations apply: Mm = diag
[
I(1), . . . , I(n)

]
, Cm = diag

[
2 ξ

(1)
r ω

(1)
r , . . . , 2 ξ

(n)
r ω

(n)
r

]
,

Km = diag
[
ω

2 (1)
r , . . . ,ω

2 (n)
r

]
, where for a substructure s, I(s) is an identity matrix, and

ω
2 (s)
r and ξ

(s)
r are the diagonal matrices of the substructure’s eigenvalues and the damping

ratios, respectively.
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Within the primal formulation, a unique set of generalized coordinates ξ is

used, following the relation:

η = Lm ξ . (9)

Note, that in order to enforce the interface assembly in a fully compatible way,

matrix Lm must span the null-space of Bm. This weakens the equilibrium

condition, as R Lm represents a subspace of L [2]. By pre-multiplication with

LT
m, the system of Eqs. (6)–(8) reduces to:

M̃m ξ̈ + C̃m ξ̇ + K̃m ξ = f̃m , (10)

where:

M̃m = LT
m Mm Lm, C̃m = LT

m Cm Lm, K̃m = LT
m Km Lm, and f̃m = LT

m fm.

2.2. Weak compatibility and equilibrium formulation

If the B matrix is a signed Boolean matrix, the compatibility condition

states that any pair of matching-interface degrees of freedom must have the

same displacement4. Within the paper, the corresponding physical constraints

are considered as exact/strong. When considering an interface with multiple

connection points, an exact compatibility requirement might not be optimal

for the substructuring procedure [5]. Moreover, the maximum number of con-

straints is limited by the sum of the substructures’ modes5. Within the weak

compatibility formulation, the number of constraints is reduced using a weak-

ening matrix W. Eqs. (7) and (8) can be rewritten as:

W Bm η = 0 , (11)

null [W Bm]
T
g = 0 . (12)

4In general, non Boolean formulations of the B operator can also be applied to link the non-

conforming interface discretizations. Also, time-dependent formulations can be considered to

track the sliding contacts [16].
5Considering the coupling of the substructures A and B with 20 modes each; the maximum

number of applicable spatial point connections is limited to 13, resulting in a coupled AB

structure with a single modal-DoF.
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Within the established modal constraint approach, the modal basis of a se-

lected substructure is used to formulate the weakening matrix. In the proposed

methodology, singular vector constraints are considered as an alternative to form

a suitable basis for the constraints-weakening procedure.

2.3. Singular Value Decomposition

Singular value decomposition of an arbitrary complex non-square matrix P

can be given as:

P = U S VH , (13)

where U and V are orthonormal matrices of the left and right singular vectors,

respectively, and S is a diagonal matrix of real, non-negative singular values,

arranged in a descending order. The superscript [ ]H indicates a conjugate trans-

pose.

When a set of concatenated mode shapes is considered as an input matrix,

the left singular vectors can be considered as orthonormal response vectors and

the right singular vectors reveal how each response vector participates in each

of the input mode shapes. The corresponding singular values indicate the im-

portance of each contribution[1].

3. Methodology

3.1. Proposed approach to singular vector constraints

To increase the clarity, the proposed novel methodology in this section is

explained by considering the coupling procedure for substructures A and B, de-

picted in Figure 1. The modal parameters can be determined either numerically

or experimentally [17, 18] for the selected DoF on the structures. In general, for

a substructure s, the considered DoF can be divided into sets of internal DoF

u
(s)
i and boundary DoF u

(s)
b , with the latter being located at the interface.
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Boundary DoF
ub

Internal DoF
ui

Substructure A

Substructure B

Figure 1: Coupling procedure of substructures A and B.

Within the paper a (truncated) set of N (s) real mass-normalized free-interface

mode shapes Φ(s) is considered as a reduction matrix. Following the distribution

of DoFs, the mode-shape matrix can also be divided into boundary (index b)

and internal (index i) components:

Φ(s) =

Φ
(s)
b

Φ
(s)
i

 . (14)

The strong physical compatibility condition can be given as:

u
(A)
b = u

(B)
b . (15)

A weak formulation of modal constraints (MC) is considered when the phys-

ical motion at the interface is projected onto the truncated modal basis of one

of the substructures (A or B). In general, an arbitrary set of Nc mode shapes

of substructure s can be used to generate a weakening matrix6:

WΦ
(s) = Φ

(s)†
b,Nc

, (16)

where [ ]† denotes a generalized inverse. For example, consider using the modal

basis of substructure A. In this case, a weak modal formulation of the compat-

ibility condition (15) is given as:

Φ
(A)†
b,Nc

u
(A)
b = Φ

(A)†
b,Nc

u
(B)
b , (17)

6Within the paper the first Nc mode shapes will be considered; however, in general an

arbitrary combination can be used.
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where the left-hand side of the equation is equal to the first Nc modal (gener-

alized) coordinates η
(A)
Nc

. Therefore, physically, Eq. (17) constrains the modal

coordinates of substructure A to their orthogonal projection onto the interface

motion of substructure B [5]. Here, alternatively, the modal basis of substruc-

ture B could also be used. The origin of the selected projection basis and also the

number of considered base vectors can significantly affect the resulting substruc-

turing prediction. In general, it is difficult to select an appropriate projection

basis (in terms of both the origin and the dimension). Therefore, this topic is

addressed in our research in terms of proposing a SVD approach that enables

the generation of a weakening basis together with a criterion to estimate the

required number of constraints.

As an extension of the established modal weakening methodology, a new

singular vector-based approach is proposed. The idea is to formulate a concate-

nated mode-shape matrix of substructures A and B (limited to the boundary

DoF) and perform the singular value decomposition (SVD)7:

P =
[
Φ

(A)
b Φ

(B)
b

]
= U S VT . (18)

Note, that an appropriate selection of the truncation limit is required in Eq. (18)

for both modal bases, to ensure that a relevant dynamic behaviour is contained,

considering the frequency band of interest.

SVD provides the most efficient way to capture the dominant components of an

infinite-dimensional processes with a finite and often relatively small number of

contributions [19, 20]. Therefore, it is reasonable to expect that the input matrix

P can be well approximated by Nc � N (A) + N (B) singular contributions:

P ≈ P̃Nc = UNc SNc VT
Nc

. (19)

Since the mode shapes are considered in the SVD input matrix, the quality

of the approximation can be evaluated using the established modal assurance

7Within the paper, only real modes are considered, therefore conjugate transpose [ ]H is

replaced by transpose [ ]T when considering SVD in Eqs. (18) and (19).
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criterion (MAC) [21]. For the given Nc, the MAC values for all the mode shapes

of substructures A and B can be evaluated:

dNc = MAC
(
P, P̃Nc

)
(20)

In the proposed weak formulation of singular vector constraints (SVCs),

the physical motion at the interface is projected onto the Nc dominant left sin-

gular vectors. These vectors are obtained by the SVD of the combined modal

bases of the substructures A and B8. Unlike with the modal-constraint ap-

proach, where the weakening matrix is based on the global motion of a single

substructure, the set of the first Nc left singular vectors embodies the most

dominant interface motion of both substructures. The unnecessary/redundant

information is omitted. Therefore, these singular vectors are expected to form

a consistent projection basis for the constraint-weakening process:

WU
(A,B) = U

(A,B)T
Nc

. (21)

A weak singular vector formulation of the compatibility condition (15) can be

written as follows:

UT
Nc
u
(A)
b = UT

Nc
u
(B)
b . (22)

Left singular vectors, that capture the dominant interface dynamics, typically

prove to form a consistent basis for the constraint-weakening process. However,

a proper estimate of the number of dominant singular vectors is of great impor-

tance. Based on the presented analyses, it transpires that the best quality of

substructuring prediction is typically obtained if the cut-off limit is selected in

the range where the magnitude of the singular values is reduced by 80–90%. In

the following, this empirical criterion is used to determine the number of consid-

ered left singular vectors in the weakening matrix. The proposed methodology

is schematically depicted in Figure 2.

8Since the matrix UNc is real and orthonormal, the calculation of the generalized inverse

can be simplified to transposition. As a result, a single singular vector defines a single con-

straint equation.
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Modal basis A
(Boundary components)

Modal basis B
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SVD

(A,B)W  = U
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Modal 
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Modal 
basis B

Substructure B

Internal
DoF

Internal
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Figure 2: Schematic depiction of the proposed SVC approach.

3.2. Direct Coupling

In this section the general equations of modal substructuring are applied to

the direct coupling of substructures A and B (Figure 1). Within the paper, the

substructuring prediction of the damping properties is not discussed; therefore,

the damping-related terms are omitted in the following.
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The equation of motion Eq. (6) can be written as9:

I(A) 0

0 I(B)

 η̈(A)

η̈(B)

+

ω2 (A)
r 0

0 ω
2 (B)
r

 η(A)

η(B)

 =

f (A)
m

f
(B)
m

+

g(A)
m

g
(B)
m

 , (23)

where, I(s) is an identity (mass) matrix and ω
2 (s)
r is a diagonal matrix of the

substructure’s eigenvalues.

Considering Eq. (11) and assuming the collocation of the boundary DoF on

substructures A and B, a weak compatibility condition can be written as:

W
[
[Ib,0i]

(A)
[−Ib,0i]

(B)
] Φ(A) 0

0 Φ(B)

 η(A)

η(B)

 = 0 . (24)

Within the direct-coupling examples in Section 4, three different formulations

of weakening matrices are considered, following Eqs. (16) and (21):

• Case 1: Weak modal constraints, considering the first Nc mode shapes of

substructure A: W = WΦ
(A) = Φ

(A)†
b,Nc

• Case 2: Weak modal constraints, considering the first Nc mode shapes of

substructure B: W = WΦ
(B) = Φ

(B)†
b,Nc

• Case 3: Weak singular constraints, considering the first Nc left singular

vectors, obtained by the SVD on the concatenated mode shapes of sub-

structures A and B: W = U
(A,B)T
Nc

3.3. Transmission Simulator Method

The transmission simulator method was developed to combine experimen-

tally derived modal models with analytical (numerical) ones [5, 13]. A flexible

fixture or transmission simulator (TS) is introduced to the substructuring pro-

cedure. TS is attached to the experimental substructure B to improve its modal

9Note that for a substructure s, a (truncated) set of N(s) mass-normalized free-interface

mode shapes Φ(s) is considered as a reduction matrix.
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basis. The combined B+TS substructure is denoted as BTS. TS can also be at-

tached to the numerical substructure A (thereby forming the ATS structure), in

a way to occupy the same space as on the experimental substructure10. Since a

numerical model of TS is also available, the coupled response of the AB structure

is obtained by one coupling and two decoupling steps between the substructures

ATS, BTS and TS, as depicted in Figure 3.

Substructure BTS
Substructure ATS

Substructure TSSubstructure TS

Figure 3: Depiction of coupling/decoupling procedure in the transmission simulator method.

In order to improve the substructuring prediction using the transmission simu-

lator, the physical design should comply with the following guidelines [13, 22]:

• The interface geometry and material of the TS should be compliant to

the real coupled interface properties, in order to capture the stiffness and

damping of the joint.

• The TS should be as simple as possible to model and fabricate.

• The TS should stress the joint in the manner that roughly resembles the

dynamics of the real coupled structure.

10Physically, such a coupling is not possible; however, it is easily applicable at the level

of numerical modelling. The coupling of A and TS (and afterwards also decoupling) is not

necessarily required; however such a case will be discussed in the following.

14



System of equations of motion for the given coupling/decoupling procedure,

considering Eq. (6), is given as:
I(ATS) 0 0 0

0 −I(TS) 0 0

0 0 I(BTS) 0

0 0 0 −I(TS)




η̈(ATS)

η̈(TS)

η̈(BTS)

η̈(TS)

+


ω

2 (ATS)
r 0 0 0

0 −ω2 (TS)
r 0 0

0 0 ω
2 (BTS)
r 0

0 0 0 −ω2 (TS)
r




η(ATS)

η(TS)

η(BTS)

η(TS)

 =


f
(ATS)
m

f
(TS)
m

f
(BTS)
m

f
(TS)
m

+


g
(ATS)
m

g
(TS)
m

g
(BTS)
m

g
(TS)
m

 ,

(25)

where for a substructure (s), I(s) is an identity matrix and ω
2 (s)
r is a diagonal

matrix of the substructure’s eigenvalues. Considering Eq. (11) and assuming the

collocation of the boundary DoF of substructures ATS, BTS and TS, a weak

compatibility condition can be written as:


W1 0 0

0 W2 0

0 0 W3




[Ib,0i]
(ATS)

[−Ib,0i]
(TS)

0(BTS) 0(TS)

0(ATS) 0(TS) [Ib,0i]
(BTS)

[−Ib,0i]
(TS)

[Ib,0i]
(ATS)

0(TS) [−Ib,0i]
(BTS)

0(TS)




Φ(ATS) 0 0 0

0 Φ(TS) 0 0

0 0 Φ(BTS) 0

0 0 0 Φ(TS)




η(ATS)

η(TS)

η(BTS)

η(TS)

 = 0 .

(26)

Within the experimental-analytical study in Section 5, two different formula-

tions of weakening matrices are considered:

• Case 1: Following the MCFS approach in [5], the modal basis of the

substructure TS is used to construct the weakening matrix:

W1 = W2 = W3 = Φ
(TS)†
b
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• Case 2: Within the proposed SVC approach, the weakening matrix for

a certain coupling/decoupling step is constructed from the dominant left

singular vectors. The Nc value for each step is selected according to the

proposed MAC-based criterion:

W1 = U
(ATS,TS)T
Nc1

W2 = U
(BTS,TS)T
Nc2

W3 = U
(ATS,BTS)T
Nc3

4. Numerical examples

In this section the direct coupling of substructures A and B is presented

in three examples. The results using the proposed SVCs are compared to the

established modal constraint approach. Substructure A is considered as the nu-

merical substructure with an arbitrary number of available modes, whereas for

the experimental (here simulated) substructure B, the upper frequency limit is

set to 8 kHz. In the reduction basis, all the mass-normalized free-interface mode

shapes up to the selected frequency limit are considered. All the substructures

are modelled with solid finite elements (3 displacement DoFs/node). The ref-

erence (AB) structure model consists of two substructures, perfectly bonded at

the interface with approx. 2500 nodes, simulating a homogeneous joint. The

substructuring procedure is performed considering multiple connection points’

displacements and applying weak constraint formulation. With such an ap-

proach, the need for explicit consideration of rotational degrees of freedom at

the interface is avoided [5].

A mode-by-mode comparison of the reference modal parameters and the sub-

structuring prediction can be difficult due to the possibility of mode-order

changes and/or the occurrence of spurious modes. Therefore, the coherence

function [23] is used instead to compare the substructuring prediction (Ysub)

with the reference (Yref ) frequency-response function ([ ]∗ denotes the complex

conjugate’s value):

COH(Yref , Ysub) =
(Yref + Ysub)(Y ∗ref + Y ∗sub)

2(Yref Y ∗ref + Ysub Y ∗sub)
, (27)
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Three types of substructures are considered, i.e., two variations of the numeri-

cal substructure (A1 and A2) and an experimental substructure (B). The cor-

responding geometrical models are depicted in Figure 4. On the numerical

substructures A1 and A2, 48 and 63 connecting points (3 DoF) were selected,

respectively. For either case, the corresponding number of coincidental points

is considered on the experimental substructure B. The selected coupled upper

frequency limit is set to 4 kHz.

Connection point

(a) (b) (c)

Figure 4: CAD models: (a) Substructure A1; (b) Substructure A2; (c) Substructure B.

The applicability of the proposed methodology is tested with respect to the con-

sidered numerical truncation limit and the change of the numerical substruc-

tures’ geometry, boundary conditions and the number of connecting points.

4.1. Numerical example 1

In the first example, the direct coupling of substructures A1 and substructure

B is analysed, as depicted in Figure 5a. For both substructures, the same 8-

kHz upper frequency limit is considered, resulting in 30 and 17 mass-normalized

mode shapes in the reduction basis for the substructures A1 and B, respectively.

Assuming three displacement DoFs per node, 144 physical constraints can be

applied for 48 connecting points. Singular values, obtained by SVD of the

concatenated modal bases of substructures A1 and B, are depicted in Figure 5b.

The grey shaded area indicates the proposed cut-off range, where the singular

value magnitude decreases to 20–10%, relative to the first component. User

selection is required in this area, for which a mid-range selection is typically
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applied 11, denoted by a red dashed line.
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Figure 5: Example 1 - (a) Substructures A and B; (b) Normalized singular values.

To demonstrate the efficiency of the SVD, the approximation (Eq. ( 19)) of the

SVD input matrix is obtained using the selected Nc = 19 dominant singular

contributions. Using Eq. (20), the accuracy of the approximation is verified,

as depicted in Figure 6. With the exception of three individual mode shapes,

which can presumably be considered less significant with respect to the interface

motion, most MAC values are very close to 1.

Mode-shapes A1 Mode-shapes B

Figure 6: MAC comparison of SVD input and approximation, obtained by Nc = 19 dominant

singular contributions.

11The proposed mid-range selection does not necessarily provide an optimal selection. Bet-

ter results may be achieved by manually selecting the cut-off limit, considering the corre-

sponding singular value curve.
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For each of the points A and B (locations are depicted in Figure 5), six distinct

FRFs can be obtained12. The accuracy of the coupling prediction is indicated

by the average coherence (Eq. (27)) of all six FRFs, obtained at the individual

point. The aim is to identify the effect of the number of applied weak constraints,

considering the three different approaches:

(a) MC-A: modal constraints, using the first Nc mode shapes of substr. A1,

(b) MC-B: modal constraints, using the first Nc mode shapes of substr. B,

(c) SVC: singular vector constraints, using the first Nc left singular vectors,

obtained by the proposed approach in Section 3.1.

The results are given in Figure 7. Note, that the proposed cut-off range only

applies to the proposed SVC approach, while in the MC approach a full modal

basis (e.g., Nc = 30 or Nc = 17 for modal bases A and B, respectively) is typi-

cally considered. A comparison of the different weakening approaches indicates

that both the selection of the weakening basis and its dimension can significantly

affect the quality of the substructuring prediction.
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Figure 7: Example 1 - Average coherence (based on the six distinct FRFs at a point of interest)

(a) Point A; (b) Point B.

12When synthesizing FRFs for a single node with x, y, z displacement DoFs and assuming

reciprocity, six distinct input-output combinations (xx, yy, zz, xy, xz and yz) are possible.
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By comparing the MC-A and MC-B approaches, generally, the results are quite

similar, which is to be expected, since the substructures A1 and B are geomet-

rically relatively similar and thus form comparable weakening bases. However,

especially at point B (Fig. 7b), slightly higher coherence values can be achieved

by using the modal basis of substructure A. This can probably be attributed to

its richer modal basis. In both cases it is evident that the optimal coherence

values are achieved in the range of Nc = 15. Compared to the results ob-

tained by the full 17- or 30-mode basis for substructures A and B, respectively,

significantly lower coherence values are achieved. This is especially evident in

Figure 7b, where the difference between the optimal and full-basis MC-A result

is close to 20%.

The SVC results demonstrate that the highest coherence values for both

points, A and B, are located within the proposed cut-off range. Despite the fact

that the range of optimal values is relatively narrow, a mid-range selection within

the proposed criterion range provides a coherence value that is comparable to

the optimal values of the MC approach. Furthermore, the comparison of the

MC and SVC results indicates that when an optimal number of singular vector

constraints is applied, comparable or slightly higher coherence values can be

achieved, compared to the optimal modal constraint results.

For the user-selected Nc = 19 using the SVC approach, the coupled pre-

dictions of the y direction driving point FRFs at points A and B are given in

Figure 8. The match with the reference is relatively good at 81% and 91% mean

coherence value for the points A and B, respectively.

In a real-life scenario, the user has no insight into the above analysis to estimate

the optimal number of applied constraints within the MC approach. Hereby,

using the full modal basis (or by random truncation selection) within the es-

tablished MC approach, the accuracy of the substructuring prediction can be

significantly lower, compared to the proposed SVC approach.
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Figure 8: Example 1 - Driving point FRF for the y direction, using SVC approach (Nc = 19):

(a) Point A; (b) Point B.

4.2. Numerical example 2

In the second example a similar coupling procedure is performed to that in

Example 1. The applicability of the proposed method is tested with respect to

the changing truncation limit of the numerical substructure A1. For example,

we can simply consider doubling the number of modes in the modal basis of sub-

structure A1 and retain the 8-kHz upper frequency limit for the experimental

substructure B (Figure 9a). In Figure 9b, the corresponding singular values are

depicted together with the shaded area, indicating the proposed cut-off range.

The user-selected value of Nc = 23 is indicated by a red dashed line.

For all three considered constraint-weakening approaches, the average coher-

ence values for the FRFs at points A and B are given in Figure 10. Comparing

the MC-A and MC-B, generally some slight advantage can be attributed to the

modal basis of the substructure A1. No significant differences can be observed

when comparing the optimal MC and SVC coherence values. However, within

the MC approach, there is no guarantee to select an appropriate truncation

limit to achieve the optimal results. The results of both the MC-A and MC-B

approaches indicate that inappropriate selection can lead to a significant reduc-

tion in accuracy. On the other hand, by applying the proposed cut-off limit
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Figure 9: Example 2 - (a) Substructures A and B; (b) Normalized singular values.

within the SVC approach, close-to-optimal results are obtained.

Compared to the results presented in Example 1 (Fig. 7), the maximum SVC

coherence values reach approximately the same value (about 90%).
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Figure 10: Example 2 - Average coherence (based on the six distinct FRFs at a point of

interest) (a) Point A; (b) Point B.

When considering analytical substructures, typically the truncation limit can be

arbitrarily selected. In order to be able to draw some clear conclusions about

the effects of changing the truncation criterion, the analysis is performed with

respect to the highest average coherence values (Figure 11a) and the correspond-

ing optimal number of the applied singular vector constraints (Figure 11b).
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Figure 11: SVC approach - Effect of the numerical substructure’s truncation limit: (a) Highest

average coherence values; (b) Optimal number of singular constraints.

Given the maximum average coherence values at point A (Figure 11a), the re-

sults indicate that a moderate increase (to roughly 1.5 times the experimental

frequency range of interest) can prove beneficial. This mostly applies to the

increased accuracy of the substructuring prediction in the DoF, located on the

numerical substructure. However, no significant changes can be observed in the

highest coherence values for point B. In Figure 11b, the red shaded area indi-

cates the proposed cut-off range, where the singular value magnitude decreases

to 20–10%. Given the locations of the optimal number of constraints in the anal-

ysed frequency range, we can conclude that the proposed criterion is suitable for

estimating the number of required constraints. Note, that the introduction of

significantly higher frequency (numerical) dynamics seems ineffective or not rel-

evant to the substructuring process in the given frequency band. In some cases

it can result in a significantly lower accuracy of the substructuring prediction.

If for some reason a high-frequency range is considered in the reduction basis,

the truncation near the frequency band of interest is required in Eq. (18).
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4.3. Numerical example 3

In the third example, several changes are applied compared to the previous

examples, to test the robustness of the proposed SVC approach. The geometry

of the numerical substructure is replaced with the A2 model and a fixed support

is applied, as depicted in Figure 12a. Considering the change in geometry, the

number of connecting point is increased to 63. The 8-kHz upper frequency limit

is retained for the experimental substructure B. Based on the conclusions from

the previous example, a truncation limit of 12 kHz (40 modes) is applied to the

numerical substructure.

In Figure 12b, the corresponding singular values are depicted together with

the shaded area indicating the proposed cut-off range. The user-selected value

of Nc = 19 is denoted by a red dashed line.
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Figure 12: Example 3 - (a) Substructures A and B; (b) Truncation criterion.

For all three considered constraint-weakening approaches, the average coherence

values for the FRFs at points A and B are given in Figure 13. The results show

that for both points, the range of maximum coherence values coincides with the

proposed shaded criterion range. This indicated that the proposed approach

and cut-off criterion are also applicable in different substructuring cases.

In this case the comparison of the optimal results obtained using the three

approaches indicates that the proposed SVC approach seems to provide higher

accuracy for the substructuring prediction. For example, when considering the
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Figure 13: Example 3 - Average coherence (based on the six distinct FRFs at a point of

interest) (a) Point A; (b) Point B.

average coherence values obtained using the full 17-mode basis of substructure

B, the SVC approach provides over 10% higher accuracy at both points, A and

B. The reason for the better performance of the SVC approach can probably be

attributed to the fact that the interface dynamics of the considered substructures

are quite different. Therefore, the individual bases of substructures A and B

do not seem optimal for the substructuring process, whereas the results are

improved when both bases are taken into account within the SVC approach.

5. Experimental-numerical study

In this section the transmission simulator method is applied to the coupling

procedure for numerical substructure A1 and the experimental substructure B,

as depicted in Figure 14. Following the design guidelines in [13, 22], the trans-

mission simulator (TS) is designed as a T-shaped structure. Thus the TS sim-

ulates real interface properties, roughly resembles the dynamics of substructure

A1 and is easy to fabricate and model. The coupled substructures A1+TS and

B+TS are denoted ATS and BTS, respectively. The accelerometers used in the

experiment are included in the numerical models to ensure the highest-possible

accuracy.
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Figure 14: Transmission-simulator method - experiment depiction.

An actual BTS substructure was fabricated (Figure 15) and a multi-reference

experimental modal analysis was performed [24] in the frequency range of 8 kHz.

A PCB 086C03 impulse hammer was used for the impact excitation and four

triaxial PCB 356A32 accelerometers, a triaxial Dytran 3133A1 accelerometer

and a Polytec PDV-100 laser vibrometer were used to measure the structure’s

response. Approximately free-free boundary conditions were applied using the

polyurethane-foam support blocks. Modal identification was performed using

the Polymax algorithm [24].

In addition, an accurate numerical model of the BTS structure was built. Con-

sidering the frequency range of 8 kHz, 6 rigid-body and 13 flexible modes can

be extracted. The comparison of the numerical and experimental models in

terms of natural frequencies and MAC values for the first 13 flexible modes is

given in Figure 16. The agreement in natural frequencies is very good for all the

13 modes, with the average absolute deviation below 1%. Similarly, the MAC

values are close to 1 for the first 11 modes. For the higher modes, nonetheless,

26



(a) (b)

Figure 15: Experiment: (a) Setup; (b) BTS structure.

a significant drop can be observed. For the 12th mode, the MAC value of 0.61

is considered as acceptable; however, the 13th mode is excluded from further

consideration due to the obvious inaccuracy of the identified mode shape.
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Figure 16: Accuracy of the BTS structure numerical model compared to the experimental

data: a) Natural frequency deviation; b) Modal assurance criterion (MAC).

Since the BTS structure is made of a homogeneous beam and plate, the B and

TS substructure numerical models can be obtained by considering the mate-

rial and geometrical properties of the validated numerical BTS substructure. A

numerical coupled structure AB is considered as a reference, assuming a homo-

geneous joint. Based on the conclusions in Section 4, a truncation limit of 12 kHz

is considered for the numerical substructures ATS and TS. The experimental
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BTS model consists of the 6 rigid-body modes, obtained by the mass-properties

of the structure, and the first 12 flexible experimental mass-normalized mode

shapes (with the corresponding natural frequencies). The coupling procedure

is performed at multiple discrete points, as depicted in Figure 17a. Using the

available measuring equipment, the interface response at 4 points was mea-

sured using triaxial accelerometers (location shown as black dots), resulting in

12 measured displacement DoFs. The most prominent motion was expected in

the out-of-plane direction, thus additional 25 out-of-plane measurements were

performed using a laser vibrometer (locations shown as red dots) to capture this

motion with higher spatial resolution. As a result, 37 physical constraints could

be applied for each of the coupling/decoupling steps.

The aim of the study is to compare the substructuring prediction obtained

using the established MCFS approach and the proposed SVC approach. In

the first case, the (full) modal basis of substructure TS is used to obtain the

weakening matrix. As an alternative, the applicability of the proposed singular

vector constraints is explored. For each coupling/decoupling step, the first Nc

dominant left singular vectors are used, obtained from the modal bases of the

corresponding substructure pairs. The related singular value curves are given in

Figures 17b–17d. The user-selected number of dominant singular vectors within

the shaded range are denoted by the red dashed line.
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Figure 17: (a) Connecting points (laser - red, accelerometer - black); (b) Quality criterion -

Step 1 (ATS-TS decoupling); (c) Quality criterion - Step 2 (BTS-TS decoupling); (d) Quality

criterion - Step 3 (ATS-BTS coupling).

Applying the established MCFS, the coupled predictions of y direction driving

point FRFs for points A and B are given in Figure 18 and compared to the

reference. When the full modal basis (19 mode shapes) of the TS substructure

is used to generate the weakening basis, an average coherence of 64% and 82%

is obtained for points A and B, respectively, using the MCFS approach. For

the proposed SVC approach, the coupled predictions of the y direction driving

point FRFs for points A and B are given in Figure 19. Considering the user-

selected Nc1 = 16, Nc2 = 17, Nc3 = 16, an average coherence of 85% and 87%

is obtained for the points A and B, respectively.
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Figure 18: MCFS approach - Driving point FRF for the y direction: (a) Point A; (b) Point

B.
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Figure 19: SVC approach - Driving point FRF for the y direction: (a) Point A; (b) Point B.

Within the presented MCFS results, the full modal basis of the TS substructure

is considered for the weakening process. However, it turns out that the optimal

MCFS-based results are obtained by using a reduced sub-basis of 12 modes.

In such a case, the average coherence of 84% can be obtained for the given

FRF at both points A and B, respectively. In this case the accuracy is very

similar to the SVC results. In a real-life application, without prior knowledge
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of the coupled dynamics, it is very demanding to estimate the optimal number

of required modal constraints.

Within the MCFS [5], a general guideline proposes a truncation limit near

the frequency band of interest. Therefore, an additional analysis is performed

in which the truncation limit is varied in the ±2 kHz range of the testable

frequency limit of 8 kHz. At the lower (6 kHz) boundary of the range, 12 and

24 modes can be obtained for substructures TS and ATS, respectively. Similarly,

16 and 42 modes can be obtained for substructures TS and ATS at the upper

(10-kHz) frequency limit. A comparison of the average coherence values for

six distinct FRFs at point A, obtained by the MCFS and SVC approach for

different truncation limit combinations, is given in Figure 20.
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Figure 20: Consistency comparison of the MCFS and the proposed SVC approach.

Although the differences between the two approaches are not significant, the

proposed SVC approach seems to provide greater consistency of results, when

compared to the established MCFS. This is also evident from the comparison of

the average achieved value for the different combinations of truncation limits,

which is 75% for the MCFS approach and 80% for the SVC approach.

6. Conclusions

In this paper a new approach to the constraint-weakening process within

modal substructuring is presented. It is based on singular value decomposition
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and can also be seen as an extension of the established modal constraints (MCs)

approach. Instead of a single modal basis being used in the weakening process,

the proposed approach is based on the modal bases of two substructures that

form a mutual interface. The concatenated interface-related components of the

modal bases are submitted to SVD. The resulting dominant left singular vectors

are selected, based on the proposed criterion, to form an orthonormal weaken-

ing basis. Thus, compared to the established MC approach, a potentially richer

vector space is formed that captures the interface dynamics of both substruc-

tures and contains no redundant or insignificant contributions. Also, in the

established MC approach, no general criterion is available to select the optimal

modal sub-basis for the constraint-weakening process. However, in the proposed

SVC approach, the number of dominant left singular vectors can be performed,

based on the magnitude of the corresponding singular values.

The presented examples demonstrate the applicability of the proposed ap-

proach, when considering multi-point/continuous connections. The results in-

dicate that with a proper application of singular vector constraints (SVCs),

the equivalent of the higher accuracy of the substructuring prediction can be

achieved even when compared to difficult-to-predict optimal MCs results. When

considering a random selection of the truncation limit near the measurable fre-

quency band, the application of SVC seems to ensure greater consistency of

the results, compared to the MC. The proposed SVC approach, together with

a suitable cut-off criterion, therefore proves to be beneficial when considering

multi-point or continuous contact within the modal substructuring.
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