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Abstract:

In this paper three approaches are combined to develop a structural-acoustic
model of a rectangular plate-cavity system with an attached distributed mass
and internal sound source. The first approach results from a recently pre-
sented analysis based on the Raylegih-Ritz method and is used to circumvent
the difficulties in obtaining the natural frequencies and mode shapes of a plate
with an attached, distributed mass. Furthermore, different plate boundary
conditions can be accommodated. The resulting mode shapes are defined as
continuous functions; this is advantageous as they can be directly used in
the second approach, i.e., the classic modal-interaction approach in order to
obtain the coupled equations of the system. Finally, in the third approach a
group of point sources emitting a pressure pulse in the time domain is used
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to model an internal sound source. For the validation of the developed model
an experiment was conducted in two configurations using a simply supported
aluminium plate and a clamped plate coupled with a plexiglas box contain-
ing a loudspeaker. Good agreement was found between the analytical and
experimental data.
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1 Introduction

Analytical models based on a modal-interaction approach [1] can be used to
represent a variety of structural-acoustic problems. They are frequently used
to model enclosures with one flexible wall excited by an external sound field.
Such plate-cavity systems provide a better insight into the physical principles
than more complex systems analyzed with the finite-element method.

Some early investigations of plate-cavity systems were made by Dowell
and Voss [2] and Lyon [3]. A general modal-interaction approach theory for
the case of an external excitation is presented in [4] by Dowell et al. They also
provide comparisons of the theory and experiment that show good agreement.
More recently the coupled modal approach was used in the context of active
noise cancelation. Al-Bassyiouni and Balachandran [5] used it for modeling
the structural acoustics of sound transmission through a flexible panel into an
enclosure. The panel was clamped along all four edges and the appropriate
expressions for the mode-shape approximation were obtained from the work
of Blevins [6]. Dupont et al. [7] used a plate-cavity system in the process
of investigating the potential of active absorption for reducing low-frequency
noise transmission out of an enclosure. A simply supported plate was used
in the model and the experiment. Therefore, the analytical expressions were
known for the plate mode shapes. For the excitation of the cavity a single
point source located in the corner of the cavity was used. Venkatesham et al.
[8] developed an analytical model for the calculation of beak-out noise from
a rectangular plenum with four flexible walls. The latter were unfolded in
order to obtain their mode shapes via the Rayleigh-Ritz approach. The inlet
opening of the plenum was modeled as a piston source with uniform velocity.
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Park et al. [9] proposed an analytical method for modeling the acoustic cavity
coupled with a locally stiffened rectangular plate. This is modeled using a
unique analytical method proposed by Yoon et al. [10]. The excitation of
the simply supported plate is accomplished by the transverse loading of the
plate and a point source in the interior.

A wide variety of means were used to battle the transmission of sound
waves from the exterior to the interior of the plate-cavity system. The op-
posite case, when the wall is excited by an internal sound source, is rarely
investigated. Additionally, the plate with an attached distributed mass cou-
pled with an acoustic cavity represents a viable and often-used method for
passive noise reduction.

It is known that the effects of a point mass can be used to reduce the
radiated sound power from a structure. Pierre and Koopman [11] achieved
large sound-power reductions by optimally placing strategically sized point
masses on a plate. The mode shapes and the natural frequencies of the plate
were obtained by using the finite-element method. Similarly, Constans et
al. [12] used point masses on a cylindrical shell in order to minimize the
radiated sound power. Using an optimization process in combination with
the finite-element method a position of point masses on the shell was found
that made the shell a weak radiator. Li and Li [13] studied the effects of
the distributed masses on the acoustic radiation behavior of plates in air and
water. A finite-element method was employed for the discretization of the
structure and the Rayleigh integral was used for modeling the fluid.

It is clear that the application of a point mass can dramatically change the
capability of a structure to radiate sound. However, a difficulty arises when
one would like to study this effect on a plate-cavity system using a coupled
modal approach. The uncoupled mode shapes of a mass-loaded plate must
be known before a modal-interaction approach can be applied. The use of the
finite-element method, as in references [11]-[13], is unsuitable as the results
are given in discrete points and not as a continuous function. Additionally,
the use of a single point source emitting in a limited frequency range as used
by Dupont et al. [7] and Park et al. [9] is not sufficient when the coupled
system is excited by a loudspeaker in the interior.

In this paper a structural-acoustic model of a plate-cavity system with
an attached distributed mass and an internal sound source is developed by
combining three approaches. First, a recently presented analysis with the
Rayleigh-Ritz method [14] that is used to eliminate the difficulty of obtaining
the ’in vacuo’ plate mode shapes and the natural frequencies of the plate with
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the attached distributed mass. In this way a wide range of plate boundary
conditions can be easily accommodated. The appropriate approximation
functions for different plate boundary conditions and the selection process
for the key parameters are shown. Second, the modal-interaction approach
is used to obtain the coupled equations of the system. Third, a group of
sources representing a loudspeaker is used to emit a pressure pulse in the time
domain. This ensures that all the frequencies are present in the excitation
spectrum and not only a specified narrow band. To validate the developed
structural-acoustic model an experiment is set up. A plexiglass box is coupled
with two aluminium plates in two configurations and excited by an acoustic
pulse from a loudspeaker in the interior. In first configuration all edges of
the plate are simply supported and in the second configuration the edges are
clamped. The structural and acoustic response is compared with the results
from a computer implementation of the developed structural-acoustic model.

The article is organized as follows. First, a structural-acoustic model of
the plate-cavity system is developed. Then an experimental setup is pre-
sented for the validation of the developed model. Finally, the analytical and
experimental results are compared and discussed.

2 Structural-acoustic model

2.1 System description

The plate-cavity system considered in this paper consists of a flexible plate
coupled with a rigid-wall acoustic cavity, see Fig.1. The plate can be clamped
or simply supported along its edges in any combination. Additionally, it is
loaded with a distributed mass of arbitrary dimensions Ldm,x and Ldm,y and
a mass loading per unit area M . The system can be excited by a single point
source or a group of point sources positioned at an arbitrary location in the
cavity. In order to use the modal-interaction approach the uncoupled modal
shapes and natural frequencies of the plate must be known ’a priori ’.

2.2 Obtaining the modal parameters of a plate loaded
with a distributed mass

For the structural part of the modal-interaction approach the ’in vacuo’
normal modes and natural frequencies are needed. These are analytically
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Figure 1: Scheme of the considered plate-cavity system.

known for the basic case of a simply supported plate without a distributed
mass. However, when the distributed mass is attached, the plate modes
and natural frequencies are no longer analytically obtainable. To circumvent
this difficulty the results from a recently presented analysis of a mass-loaded
plate based on the Rayleigh-Ritz approach [14] were used. The Rayleigh-Ritz
method is suitable because the resulting mode shapes can be integrated as
they are defined as continuous functions. Therefore, the results can be used
directly in the modal-interaction approach.

If the effects of shear deformation and rotary inertia are neglected the
dynamic equation for the deflection of a uniform isotropic rectangular plate
with an attached distributed mass can be written as [14]:

∇4

[
Eh3w (x, y, t)

12 (1− ν2)

]
+
∂2 (ρphw (x, y, t))

∂t2
+
∂2 (MA′w (x, y, t))

∂t2
= 0, (1)

where E is the Young’s modulus, h is the thickness of the plate, w is
the plate’s normal displacement, ν is the Poisson ratio and ρp is the density
of the plate material. Furthermore, t is the time, M is the distributed mass
loading per unit area and A′ is the area of the distributed mass. By assuming
a simple harmonic vibration, the solution of equation (1) can be written as:
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w (x, y, t) = W (x, y) sin (ωt) , (2)

where W represents the plate deflection shape at the angular frequency ω.
If a modal approach is applied to equation (1) then W (x, y) can be expressed
as:

W (x, y) =
M∑
m

N∑
n

Wmnαm (x) βn (y), (3)

where αm (x) and βn (y) are the appropriate basis functions that indi-
vidually satisfy at least the geometric boundary conditions in the x and y
directions, respectively, and Wmn are unknown coefficients. The appropri-
ate functions presented in Table 1 are from the work of Boay [15]. The
coefficients Wmn are obtained by solving the generalized eigenvalue problem
resulting from the Ritz method [14]:

∑
m

∑
n

{
Cmnij − λ

[
E

(0,0)
mi F

(0,0)
nj + (M/ρph) Ê

(0,0)
mi F̂

(0,0)
nj

]}
Wmn = 0,

Cmnij = E
(2,2)
mi F

(0,0)
nj + E

(0,0)
mi F

(2,2)
nj + ν

(
E

(0,2)
mi F

(2,0)
nj + E

(2,0)
mi F

(0,2)
nj

)
+ 2 (1− ν)E

(1,1)
mi F

(1,1)
nj , (4)

where the terms are defined as:

E
(r,s)
mi =

∫ Lx

0

(
drαm

dxr

) (
dsαi

dxs

)
dx, F

(r,s)
nj =

∫ Ly

0

(
drβn
dxr

) (dsβj
dxs

)
dy,

Ê
(r,s)
mi =

∫ xdm+
Ldm,x

2

xdm−
Ldm,x

2

(
drαm

dxr

) (
dsαi

dxs

)
dx, F̂

(r,s)
nj =

∫ ydm+
Ldm,y

2

ydm−
Ldm,y

2

(
drβn
dxr

) (dsβj
dxs

)
dy,

λ = ρphω2

D
, D = Eh3

12(1−ν2) ,

m, n, i, j = 1, 2, 3..., r, s = 0, 1, 2.

(5)

By using this approach it is also assumed that the attached distributed
mass does not change the stiffness of the plate in any way. The selection
process of the parameters M and N for a plate with all four edges simply
supported (SSSS) or clamped (CCCC) is presented in Section 4.
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Table 1: Appropriate functions to be used with different boundary conditions.
Two opposite edges αm(x) βn(y)

S-S sin
(
mπ x
Lx

)
sin
(
nπ y
Ly

) m = 1, 2, 3, ...
n = 1, 2, 3, ...

C-S sin
(
π x
2Lx

)
sin
(
mπ x
2Lx

)
sin
(
π y
2Ly

)
sin
(
nπ y
2Ly

) m = 2, 4, 6, ...
n = 2, 4, 6, ...

C-C sin
(
π x
Lx

)
sin
(
mπ x
Lx

)
sin
(
π y
Ly

)
sin
(
nπ y
Ly

) m = 1, 2, 3, ...
n = 1, 2, 3, ...

2.3 Modal-interaction approach

The Modal-interaction approach is best suited for weakly coupled systems.
It is assumed that the plate-cavity system considered in this paper is weakly
coupled (because cavity contains air) and therefore the modal-interaction
approach can be applied. The governing differential equation of the acoustic
cavity with the associated boundary conditions can be written (in terms of
pressure) as [4]:

∇2p− 1

c2
∂2p

∂t2
= 0, (6)

∂p

∂n
= −ρf

∂2w

∂t2
on AF, (7)

∂p

∂n
= 0 on AR, (8)

where p is the internal acoustic pressure, ρf is the fluid density, c is the
speed of sound and n is the normal vector. The rigid cavity walls are denoted
by AR and the surface of the flexible plate is denoted by AF. Due to the
boundary conditions (7) and (8) it is obvious that equation (6) will be coupled
with equation (1) describing the plate vibration.

The governing differential equation of the plate with an attached mass
coupled with an acoustic cavity can be written as:

∇4

[
Eh3w (rF, t)

12 (1− ν2)

]
+
∂2 (ρphw (rF, t))

∂t2
+
∂2 (MA′w (rF, t))

∂t2
=

pc (rF) + pE (rF) , (9)
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where vector rF corresponds to the plate surface AF, pc is the pressure
loading due to the cavity acoustics and pE due to some external element.
Equation (9) can be condensed to read:

∇4

[
Eh3w (rF, t)

12 (1− ν2)

]
+m (rF)

∂2w (rF, t)

∂t2
= pc (rF) + pE (rF) , (10)

where m denotes the plate mass per unit area and incorporates the effect
of the attached mass. Expanding equations (6) and (10) in terms of the
uncoupled normal modes yields the modal-interaction equations of motion
with included viscous damping terms [1]:

Ẅp (t) + 2ςpωpẆp (t) + ω2
pWp (t) =

1

Λp

∫
AF

pE (rF) Φp (rF) dS +
1

Λp

∞∑
n=1

pn (t)

∫
AF

Ψn (rF) Φp (rF) dS (11)

and for the fluid:

p̈n (t) + 2ςnωnṗn (t) + ω2
npn (t) =

− ρfc
2

V

∞∑
p=1

Ẅp (t)

∫
AF

Ψn (rF) Φp (rF) dS +
ρfc

2

V

∫
V

∂q (r)

∂t
Ψn (r) dV , (12)

where the term Λp is defined as
∫
AF

m (rF) Φ2
p (rF) dS. The first term

on the right-hand side of equation (11) represents some external loading of
the plate and the second term is the contribution due to the coupling with
the acoustic pressure. The first and second terms on the right-hand side of
equation (12) represent the contributions due to the coupling with the plate
and due to the interior sound source, respectively, where q denotes source
volume velocity per unit volume. From equations (11) and (12) it is also
clear that a single acoustic mode excites an infinite number of structural
modes and vice versa.

The expansions used in the derivation of equations (11) and (12) are:

p (r, t) =
∞∑
n=0

pn (t) Ψn (r) (13)
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and

w (rF, t) =
∞∑
p=1

Wp (t) Φp (rF), (14)

where pn is the n-th modal pressure amplitude, Ψn is the n-th acoustic
cavity rigid-wall mode shape, Wp is the p-th modal displacement amplitude
and Φp is the p-th uncoupled plate mode shape obtained with the Rayleigh-
Ritz method in the previous section.

2.4 Implementation of the internal sources

In order to excite the plate-cavity system, a pressure pulse is introduced in
the time domain. This excites all the system modes uniformly across the
frequency spectrum.

If a delta function is introduced into the source term in equation (12) the
integration is effectively limited to a point-source location r0:

ρf c
2

V

∫
V

∂q (r)

∂t
δ (r − r0) Ψn (r) dV . (15)

Assuming that q is independent of r the result of the integration is:

ρf c
2

V
q̇0Ψn (r0) . (16)

By choosing:
q0 = A0 sin (ω0t) , (17)

the term (16) changes to:

ρf c
2A0ω0

V
cos (ω0t) Ψn (r0) , (18)

which represents the effect on the n-th acoustic mode by a single source
located at point r0, pulsating with the angular frequency ω0 and amplitude
A0. In order to represent a group of sources emitting a pressure pulse in the
time domain, the term (18) is expanded to read:

ρf c
2

V

∞∑
n

NS∑
i

∞∑
j

Aijωj cos (ωjt) Ψn (ri), (19)
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where NS is the number of sources.
By using the appropriate frequency components the term (19) can be

used to represent not only the pressure pulse but also any other harmonic
excitation.

3 Experiment

In order to verify the presented structural-acoustic model an experiment was
set up as shown in Fig. 2. A parallelepiped plexiglas box was constructed us-
ing 30-mm-thick panels. The cavity of the box has the following dimensions:
Lx = 0.78 m, Ly = 0.45 m and Lz = 0.47 m, see Fig. 3 and Table 2. The
top of the box was covered by two different plates to accommodate the sim-
ply supported and clamped boundary condition. A 3-mm-thick aluminium
plate was simply supported by using a steel frame and a special 0.2-mm-
thick adapter, as shown in Fig.4(a). For the clamped boundary condition a
1.5-mm-thick aluminum plate was placed directly between the steel frames,
as shown in Fig. 4(b). To ensure an air-tight seal an O-ring gasket was
inserted between the frame and the box. A loudspeaker was positioned in
the corner of the cavity. In this way all the acoustic modes of interest could
be appropriately excited.

x

y

z

speaker

reference
accelerometer

weights

microphone

x

z

y

Figure 2: Experimental plate-cavity system.

The measurement chain used in the experiment is presented in Fig. 5.
The acoustic-cavity pressure response was measured at point rMic using a
PCB 378B02 microphone. Additionally, a Polytec PDV-100 laser vibrometer
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Figure 3: Scheme of the experimental plate-cavity system.

Table 2: Locations of the microphone, the reference accelerometer and the
loudspeaker.

x [m] y [m] z [m]
rMic 0.765 0.435 0.455
rRef 0.2 0.08 0.47
rSpk 0.07 0.362 0.08

was used to measure the plate velocity on a rectangular grid of measurement
points consisting of 15 rows and 25 columns. A computer-controlled table
was used to successively target the laser at each of the 375 measurement
points. An additional measurement point rRef was used as a phase reference
during the assembly of the plate-velocity data into mode shapes.

In the experiment a square wave with a duty cycle of a 0.00625% was
generated and fed to a Bellesound Pro4800 laboratory power amplifier. In
order to generate an acoustic pulse the amplified signal drove a Monacor
SPH-135 AD loudspeaker with a 39 Hz to 6 kHz usable frequency range and
a membrane radius of rs = 0.05 m. The center of the loudspeaker membrane
was located in a corner at rSpk and was rotated in such a position that the
plane of the membrane cut the surrounding three walls at a 45◦ angle.

During the experiment the data was sampled using a 25.6 kHz sampling

11



frequency over a 2 s time period, which defined the frequency resolution as
0.5 Hz. To acquire the velocity data at a grid point an acoustic pulse was
generated and at the same time the 2 s data acquisition began. Then the
system was left to reach a static, stationary state before the next measure-
ment was started. In order to reduce the noise in the measurement data, the
velocity measurements were averaged in the frequency domain. A similar
procedure was employed when acquiring the pressure data. Additionally, all
the necessary measurements were completed in rapid succession in order to
keep the effect of changing the ambient temperature at a minimum.

Cu adapter

Al plate

Plexiglas box

O-ring gasket

Steel frame

Steel frame

(a)

Al plate

Plexiglas box

O-ring gasket

Steel frame

Steel frame

(b)

Figure 4: Implementation of different boundary conditions in the experi-
ment; (a) Simply supported boundary conditions, (b) Clamped boundary
conditions.

Microphone

Speaker

Laser vibrometer

Accelerometer

Amplifier
Data

acquistion
Signal

generator

Interface

PC

Figure 5: The measurement chain used in the experiment.
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To provide the data for the model validation, two different load cases were
used for each plate boundary condition, see Table 3. To implement the load
cases a maximum of three identical cylindrical weights were used, each with
a diameter of 0.025 m, a height of 0.016 m and a weight of approximately
50 g. When all three weights were used, one was positioned on the interior
side of the plate and the other two on the exterior, as shown on Fig. 3.
The parameters xdm and ydm in Table 3 represent the approximate location
of the center of gravity of the attached masses. As the purpose of this
paper is not optimization of the parameters xdm and ydm, but validation of
the presented structural-acoustic model, the parameters xdm and ydm were
chosen arbitrarily. This is reasonable due to the fact that the plate dynamics
and thus response of the coupled system, is affected for any location of the
added mass.

Table 3: Experiment load cases.
Load case LC-1S LC-2S LC-1C LC-2C

Boundary cond. SSSS SSSS CCCC CCCC
Mass [g] 0 150 0 50
xdm[m] / 0.39 / 0.135
ydm[m] / 0.11 / 0.36

For each of the load cases a pressure response was measured using the
microphone positioned at point rMic. To obtain the plate mode shapes an
operational deflection shape (ODS [16]) analysis was used. An ODS can be
defined as the deflection of a structure at a particular frequency, hence only
the response measurements are needed for the analysis. However, an addi-
tional phase reference is needed for the synchronization of multiple response
measurements. In this work a laser vibrometer was used to measure the
plate velocity on a rectangular grid consisting of 375 measurement points.
The plate-velocity data was synchronized using phase data from the reference
accelerometer. The number of velocity-field measurement points provides a
smooth representation of the simply-supported plate modes up to 550 Hz and
clamped plate modes up to 320 Hz. Based on this and the used measurement
equipment the useable frequency range of the data is between 45 Hz and 550
Hz for the simply supported plate and between 45 Hz and 320 Hz for the
clamped plate. The pressure amplitude spectrum and the RMS amplitude
spectrum of the plate-displacement field will be used together with the mode
shapes to validate the structural-acoustics model in the subsequent sections.
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4 Implementation of the structural-acoustic

model

To obtain the analytical results the described structural-acoustic model was
implemented in the Python computer language. The dimensions of the cavity
and the plate are considered to be the same as those used in the experiment.
Also, the loudspeaker location and the pressure sampling point are at the
same location as in the experiment, see Fig. 3. Additionally, the exterior
pressure loading of the plate pE in equation (11) is assumed to be much
smaller than pc, i.e. pE = 0. This assumption is valid as the sound source
is located in the interior of the cavity and no additional sound sources are
present in the exterior.

To model the simply supported and clamped plate using the Rayleigh-
Ritz approach the appropriate functions from Table 1 were used. In order to
correctly select the parameters M and N in equation (3) an error analysis was
made. A finite-element method (FEM) was used to obtain a set of natural
frequencies for the simply supported and clamped plate. Then a relative
error can be defined for the i-th plate natural frequency between the FEM
results and the Rayleigh-Ritz results as:

erri =
fRR,i − fFEM,i

fFEM,i
· 100. (20)

However, a structural-acoustic model consists of several structural modes.
Therefore, a measure of the error for the first 20 plate modes is calculated
using a root-mean-square approach:

errRMS =

√√√√√ 20∑
i=1

err2i

20
. (21)

Using equation (21) the errRMS was calculated for a large selection of
parameters M and N with the only limitation being that M · N ≥ 20.
In Table 4 a sample of results is presented, showing the lowest obtained
errors. It is clear that for the simply supported plate the optimal selection
of parameters is M = 7 and N = 4 and for clamped plate M = 14 and
N = 7. A significantly larger number of terms is needed for the clamped
plate; however, the ratio M/N is similar for both boundary conditions and
is close to the ratio Lx/Ly.
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Table 4: RMS of relative error between FEM and Rayleigh-Ritz results for
different M and N .

Simply supported plate Clamped plate
M N errRMS [%] M N errRMS [%]
6 4 1.987 13 6 0.375
6 5 1.987 13 7 0.219
6 6 1.987 13 8 0.245
7 3 5.889 14 6 0.362
7 4 0.351 14 7 0.212
7 5 0.351 14 8 0.249
8 3 5.889 15 6 0.356
8 4 0.351 15 7 0.220
8 5 0.351 15 8 0.260

The definition of the load cases for the analytical model presented in
Table 5 gains an additional two parameters in order to fully describe the
distributed mass. The parameters Ldm,x and Ldm,y were chosen so that A′

approximated the plate area to which the weights were attached.

Table 5: Additional parameters for the definition of the load cases.
LC-1S LC-2S LC-1C LC-2C

Ldm,x[m] / 0.05 / 0.025
Ldm,y[m] / 0.025 / 0.025

A group of ten point sources was used to represent the loudspeaker used
in the experiment. The sources were distributed on two parallel planes ts =
0.03 m apart in a circular order, as shown in Fig. 6. The sources in the y′z′

plane had a positive amplitude and the others had a negative amplitude. The
formulation described in Section 2.4 was used to model the impulse excitation
of the loudspeaker.

To solve the coupled set of differential equations (11) and (12) some trivial
initial conditions were used. The model consisted of twenty-two uncoupled
acoustic modes and eighteen uncoupled plate modes, which are for different
load cases presented in Tables 6 and 7, respectively. The number of modes
taken into consideration covers a frequency range which is wider than that
of the experiment. This is necessary as some higher acoustic modes have a
significant effect on the coupled system’s response, even in the low-frequency
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Figure 6: Point-source representation of the loudspeaker.

range.

Table 6: First ten uncoupled acoustic-cavity modes and acoustic damping
factors used in the model for all load cases.

Mode Natural Freq. [Hz]
Dampinga [/]

Simply supported b.c. Clamped b.c.
1 0 / /
2 220 0.001 0.0015
3 365 0.0013 0.0015
4 381 0.0008 0.0015
5 426 0.003 0.0005
6 440 0.0008 0.0005
7 440 0.0023 0.0005
8 528 0.002 0.0005
9 572 0.0001 0.0005
10 572 0.0001 0.0005

a: Based on comparison between measured data and results from the model.

The structural and acoustic modal damping parameters used in equations
(11) and (12) are shown in Tables 6 and 7. Their values were obtained by
comparing the measured data with results from structural-acoustic model
for load cases LC-1S and LC-1C. It is assumed that the damping does not
change due to attached mass.

The resulting time-domain modal pressures and displacement amplitudes
were casted into the frequency domain with 0.5 Hz resolution using a Fourier
transformation. Then the pressure-amplitude spectrum at the point rMic

could be calculated. Furthermore, the plate displacements were calculated
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Table 7: Uncoupled plate modes and structural damping factors used in the
model for LC-1S and LC-1C.

Mode
Simply supported b.c. Clamped b.c.

Natural freq.a [Hz] Dampingb [/] Natural freq.a [Hz] Dampingb [/]
1 48.5 0.009 45.4 0.004
2 84.6 0.008 64.2 0.003
3 144.8 0.01 97 0.005
4 157.6 0.01 115 0.023
5 193.7 0.005 133 0.0045
6 229.2 0.006 143 0.01
7 254 0.001 163.9 0.01
8 337.7 0.01 202.1 0.007
9 338.4 0.04 207.8 0.025
10 339.5 0.005 220.6 0.005
11 375.7 0.02 238.5 0.008
12 436 0.008 265.3 0.012
13 446.8 0.01 268.9 0.008
14 470.2 0.01 273.3 0.017
15 520.3 0.04 311.8 0.01
16 579.4 0.01 335 0.001
17 594.2 0.001 358.3 0.001
18 627 0.001 361.3 0.001

a: Obtained with the Rayleigh-Ritz method.
b: Based on comparison between measured data and results from the model.

at the same grid points as used in the experiment. Finally, a fine grid was
used in order to generate accurate mode shapes for a comparison with the
experiment.

5 Results and discussion

In this section the analytical and experimental results are compared in order
to validate the presented structural-acoustic model. The comparison was
made using the sound pressure level at the point rMic, the plate mode shapes
and the RMS plate-displacement level based on all 375 grid points. The
correlation between the calculated and the measured plate-mode shapes was
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established using a modal assurance criterion (MAC) [17]. Additionally, in
Table 8 an overview of the mode frequencies for all the load cases is presented.
The results show an average relative error of approximately 1% between
the analytical and experimental data and are considered to be in a good
agreement.

Table 8: Experimental and analytical mode frequencies of the coupled system
for all the load cases.

LC-1S LC-2S LC-1C LC-2C
Mode Ana. Exp. Ana. Exp. Ana. Exp. Ana. Exp.

[Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz]

1 54 50.5 52 48 48 51.5 48 52
2 84 81.5 84 81.5 64 63 63.5 63.5
3 144.5 143 132 130 97 97 94 97
4 157 153.5 150 147.5 115 111 112 110.5
5 193 192 192 191 133 130.5 124 126.5
6 219 219.5 219 219 143 141.5 139.5 141.5
7 231 230 230 229.5 164 160.5 155 155
8 253.5 256 236 238 202 200 191 191
9 337 335 319 315 207 204 203.5 203.5
10 370 369 337.5 332 220 220.5 220 220
11 375 372 369 369 239 237 230 230
12 382 384 374 372 269 264 253 250
13 428 429 382 384 273 271 266 265
14 434 436 415 415 312 306 272.5 272.5
15 442.5 444 428 429 301 297.5
16 446.5 453 438 441
17 470.5 466 443 445
18 520 527 464 462
19 529 531 516 524.5
20 529 531

Avg.a 1.20 1.41 1.33 0.96
a: Average relative error in %.

5.1 Simply-supported plate

In Fig. 7 the RMS plate-displacement spectra are shown for the simply
supported plate. The effect of the attached mass is most noticeable at 250
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Hz and 340 Hz. The plate-controlled modes shift to the left due to the added
mass. The first cavity-controlled mode at 220 Hz and the 230 Hz mode are
unaffected as the mass is in the node of the mode dominating response in
that region. The added mass changes the mode shape of the second cavity-
controlled mode at 370 Hz, as shown in Fig. 8; however, its amplitude and
frequency are unaffected. The effects of the added mass can also be seen in
the sound pressure level spectra presented in Fig. 9. Additionally, it can be
seen that the cavity-controlled modes at 440 Hz are also significantly affected.
It is clear that the structural-acoustic model correctly predicts the changes
of the plate and cavity-controlled modes due to added mass.
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Figure 7: RMS plate-displacement level spectrum for LC-1S and LC-2S.

5.2 Clamped plate

In Fig. 10 the RMS plate-displacement spectra are shown for the clamped
plate. Most notable changes are in the frequency range from 180 Hz to 260
Hz. The plate-controlled modes shift to the left due to the added mass. The
amplitude and frequency of the cavity-controlled mode at 220 Hz are again
unaffected. However, the added mass changes its mode shape as shown in
11. The effects of the added mass can also be observed in Fig. 12. It can be
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Figure 8: Comparison of the simply-supported plate mode shapes at second
cavity controlled mode at approximately 370 Hz. The symbol ’◦’ represents
the mass location.
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seen that the overall agreement is good, although some discrepancies exist
in the amplitudes between the analytical and experimental data. This is due
to the fact that the clamped boundary conditions are difficult to replicate
in the experiment and that the clamped plate’s natural frequencies are very
sensitive to ambient temperature changes.
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Figure 10: RMS plate-displacement level spectrum for LC-1C and LC-2C.

5.3 MAC analysis

In order to compare the experimental and analytical mode shapes quantita-
tively, a MAC analysis was employed for all the load cases. The MAC results
are presented in Fig. 13-16. The numbers close to 1 on the diagonals show
that the similarity between the analytical and experimental mode shapes is
very good. In some cases a cluster of high values can be observed on the
diagonal. This means that for the corresponding peaks the plate vibrates
with almost identical mode shapes.
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Figure 11: Comparison of the clamped plate mode shapes at first cavity
controlled mode at approximately 220 Hz. The symbol ’◦’ represents the
mass location.

5.4 Overview of the results

From the presented results it can be determined that the implemented structural-
acoustic model provides good predictions of acoustic and plate levels, com-
pared to the measurements. Furthermore, changes in coupled-system re-
sponse due to added mass are also accurately predicted. This also indicates
that experimental setup correctly replicated assumed plate boundary condi-
tions and that a loudspeaker can be successfully represented by using a group
of point sources.

To summarize the structural-acoustic behaviour of the coupled system,
the cavity pressures, seen on Figures 9 and 12, are controlled mainly by
the acoustic modes, while the plate deflection, seen on Figures 7 and 10,
is controlled by the structural modes and above second acoustic mode (see
Table 6) also by acoustic modes. From Table 8 it can be seen that added
mass weakly affects structural modes frequency wise; however, the plate mode
shapes can be significantly affected as can be seen in figures 8 and 11.
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Figure 12: Amplitude spectrum of sound-pressure level for LC-1C and LC-
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Figure 13: Modal assurance criterion results for LC-1S.
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Figure 14: Modal assurance criterion results for LC-2S.
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Figure 15: Modal assurance criterion results for LC-1C.
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Figure 16: Modal assurance criterion results for LC-2C.
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6 Conclusion

A structural-acoustic model of a plate-cavity system with an attached dis-
tributed mass and internal sound source was developed by combining three
approaches. The first approach is based on a recently presented analysis with
the Rayleigh-Ritz method [14], which provided the uncoupled plate mode
shapes needed in the second approach, i.e., the modal-interaction approach.
This was necessary due to the unavailability of the analytical expressions for
a plate loaded with a distributed mass. Furthermore, it facilitates the use of
various plate boundary conditions and the arbitrary size and location of the
attached distributed mass. The appropriate approximation functions and the
selection process of the key parameters were shown. The system was excited
by an internal sound source, which in the third approach is represented by a
group of point sources generating an acoustic pulse in the time domain.

The structural-acoustic model was validated by conducting an experi-
ment. A plexiglass box was coupled with two different aluminium plates in
simply-supported and clamped configurations. The system was excited by
an acoustic pulse from a loudspeaker in the interior of the plexiglass box.
The acoustic and structural response was measured and compared to the re-
sults from a computer implementation of the structural-acoustic model. The
results were compared for four different load cases and good agreement was
found. From the results it can also be concluded that the loudspeaker used
in experiment was correctly represented by the group of point sources.
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