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Abstract

This paper presents an approach to minimize and control the error of the kinematic parame-
ters of the space-constraint rigid-body system by using inertial micro-electro-mechanical sensors
(MEMS). We analyze the error propagation when the kinematic joint constraints are observed for
a sensor-fusion update in the kinematic model because of the uncertain position of the inertial sen-
sors. The minimization of the errors of the kinematic parameters comes from applying multiple
inertial units on every rigid body with the controlled input positional error between each inertial
unit. The analytical approach proposes the inclusion of the position vectors from the inertial units
to the kinematical joints into the state vector that consists of the observed kinematical and sensor
parameters. A Kalman-filtering procedure is used to observe the state vector and, additionally,
the adaptive estimation of the position vectors from the inertial units to the kinematic joints or
constraints is presented in order to achieve the optimum performance of the filter. The analytical
approach is experimentally validated on a pendulum mechanism, where the improved performance
of the proposed approach is confirmed.

Keywords: rigid-body system, kinematic joint, accelerometer, gyroscope, sensor fusion, error
minimization

1. Introduction

Control over the kinematics of a rigid-body system, such as an industrial mechanism, is essen-
tial in engineering practice. On the one hand, the kinematic parameters of the observed system can
be analytically defined, but this procedure might be time consuming because of the complexity of
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the system, and furthermore, obtaining information about the exact external forces over time is
usually not straightforward if the system is not kinematically driven. On the other hand, the exper-
imental observation and control of the kinematic parameters is a strongly competitive approach,
especially if the parameters must be observed or controlled at a later stage. These experimental
procedures are possible with inertial MEMS sensors, which in the past decade have begun to offer
an alternative to traditional inertial sensors, or other appropriate devices, such as encoders and op-
tical systems. The advantages of MEMS are a small weight and size and an attractive price, while
their disadvantages relate to their long-term stability and accuracy, which become crucial during
an integration procedure over time.

To control the long-term precision of experimentally defined kinematic parameters researchers
have used aiding systems to update the inertial parameters. The fusion of different systems largely
depends on the observed application. In the field of biomechanics Roetenberg [1, 2] and Schep-
ers [3, 4] presented extensive research on combining the magnetic and inertial principle for an
orientation determination of the human body. In industrial environments the use of the magnetic
principle might be critical because of the interference with local magnetic fields or because of the
ferromagnetic materials of the mechanisms, despite the proposed calibration procedures. Further-
more, the use of the magnetic and inertial principles shows reduced precision when the human
body is exposed to increased translational and rotational accelerations because of the loosely-
coupled constraints between the parts of the human body and the environment, as was shown by
Brodie [5]. Therefore, other aiding systems were combined, such as a satellite signal [5, 6], like
in car navigation [7]. Also, in the field of biomechanics and entertainment the inertial principle
is combined with an optical system [8, 9], especially for an orientation determination, and with
the UWB-RF system [10] for positioning purposes. However, the disadvantage of these aiding
systems is more expensive hardware in comparison to the inertial MEMS sensors, the possibility
of their installation in mechanisms in a robust industrial environment and the inaccessibility of
the aiding signal. Therefore, the correction of the inertial principle in the case of a rigid-body
mechanism should primarily rely on the constraints in the kinematic joints as much as possible.

A more specific approach to the observation of the kinematic parameters of the mechanisms
was presented by Wagner [11]. He observed the independent degrees of freedom of the mechanism
with the inertial principle and then corrected the calculated positions of the bodies and the inertial
parameters with aiding radar units. However, his approach still requires more detailed knowledge
of the observed kinematics and is therefore time consuming. Cheng [12] made a survey of the
approaches to measuring the relative angles between coupled rigid bodies on a human body and a
robotic mechanism using only inertial sensors. The observed methods differ in the type of inertial
sensors used, in their number and in their layout on every body. Besides the lack of accuracy when
using gyroscopes over a long period of time, Cheng highlighted the reduced angular accuracy due
to the uncertain positioning of the accelerometers, which is problematic during fast rotations. He
confirmed, on a simple mechanism, that the best solution is obtained when two accelerometers
with a known distance and without any gyroscopes on each rigid body are used. However, in
order to observe the position and velocity conditions the relations between the rigid bodies of the
observed system must again be known in detail.

The observation of the kinematic parameters of the rigid-body system using inertial MEMS
sensors is therefore challenged by the use of the appropriate aiding systems or kinematic con-
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straints and by the precise positioning of the inertial units. The following research, in contrast
to [1–11], focuses on the rigid-body mechanism problem, where only kinematic constraints are
available for the long-term control of the kinematic and inertial parameters. Furthermore, in con-
trast to [11] and [12] we propose a general approach to the simultaneous characterization of the
kinematic parameters with no need to inspect the independent and dependent degrees of freedom
using a Kalman-filter formulation. Consequently, the expected uncertain estimation of the position
vectors from the inertial units to the kinematic joints in everyday engineering practice might cause
inaccuracy or the divergent behavior of the filter. Therefore, we present a solution by applying
multiple inertial units on each rigid body with controlled positional errors between each other,
which is based on the deduction of the error-propagation analysis in kinematic joints.

In the following Sec. 2 the inertial positioning is overviewed. The error propagation of the
kinematic-constraints update is investigated and the conclusion for the use of the multiple inertial
unit on each rigid body is presented. Sec. 3 presents a general formulation of the state and obser-
vation vector for a rigid-body system in a Kalman filter with the included adaptive estimation of
the position vectors from the inertial units to the kinematic joints for optimum filter performance.
Finally, in Sec. 4 the experimental validation is presented on a two-body pendulum mechanism to
confirm the improved accuracy of the kinematic parameters.

2. Error-propagation analysis of the observation constraints in kinematic joints

2.1. Inertial positioning overview
The position ri, velocity vi and the orientation qi at an arbitrary point Oi on the ith-body, ex-

pressed in the reference frame xnynzn as shown in Fig. 1, are, in discrete form, calculated from the
raw acceleration ās,i, the raw angular rate ω̄s,i, the accelerometer bias bi

a and the gyroscope bias
bi
ω, expressed in the ith-frame, as:

ri
k+1 = ri

k + vi
k∆t, (1)

vi
k+1 = vi

k +
(
Ai

k

(
ās,i

k − bi
a,k

)
+ g

)
∆t, (2)

qi
k+1 = qi

k +
1
2

qi
k ⊗

(˜̄ωs,i
k − b̃

i
ω,k

)
∆t. (3)

Ai is the transformation matrix from the ith-frame to the reference frame, g is the gravity vector
and ∆t is the time interval between the successive time steps k and k+1. The symbol ⊗ represents
the quaternion product and the symbol ˜ represents a vector in quaternion form. The quaternion
algebra and the related transformations are clearly presented in [13]. Considering the Eqs. (2)
and (3), the true acceleration āi and the true angular rate ω̄i in the ith-frame are defined as:

āi = ās,i − bi
a, (4)

ω̄i = ω̄s,i − bi
ω. (5)

The bias values of the MEMS sensors change over time, mostly because of the variation of the
surrounding temperature and because of their stochastic behavior. Choukroun [14] modeled the
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bias values as constants; however, the identification of the stochastic parameters in the time domain
using the Allan variance [15, 16] shows that the long-term changing of the bias can be modeled as
the exponentially correlated Gauss-Markov process [17]. This approach of the stochastic modeling
at the same time satisfies the condition of the normally distributed noise if the sensor bias is
observed within the state vector in the Kalman filter. Furthermore, because it is hard to distinguish
and separate different sources in practice, Gebre [18] showed that the Gauss-Markov model can
also be efficient when the temperature changes slowly in the surrounding environment. Following
the latter approach, the bias vectors ba and bω can be written in discrete form as [19]:

bi
a,k+1 = bi

a,k e−β
i
a∆t, (6)

bi
ω,k+1 = bi

ω,k e−β
i
ω∆t, (7)

where the components of the bias vectors βi
a and βi

ω stand for the inverse values of the correlation
times τi

c,a and τi
c,ω of the accelerometer and the gyroscope, respectively.

2.2. Error-propagation analysis in kinematic joints
The error of the kinematic parameters increases rapidly during the integration procedure over

time if Eqs. (1)-(7) are used in a straightforward manner. If only the kinematic constraints are con-
sidered within the Kalman-filter formulation to minimize this error, the rigid-body system should
fulfill the conditions that each rigid body needs at least one kinematic relation to the other bodies
and at least one rigid body in the system must have a kinematic relation to the environment. In
another case an additional aiding system should be used. However, the accuracy of the kinematic
constraints, such as the position and velocity conditions in kinematic joints, also has an influence
on the efficiency of the Kalman filter.

Assuming the arbitrary lth-kinematic joint between the ith- and jth-body in Fig. 1, the position
vector rl

c and the velocity vl
c at the point Cl can be written with respect to the ith-body:

rl
c = ri + Aiūi, (8)

vl
c = vi + Ai

(
ω̄i × ūi

)
, (9)

where ūi represents the position vector from the inertial unit on the ith-body to the kinematic joint
Cl, expressed in the ith-body frame. Analogously, Eqs. (8) and (9) can be written with the respect
to the jth-body. The position vector ūi is estimated when the inertial unit is fixed to the body and
is assumed to be constant in the following deduction. The opposite case will be discussed later
in the text. The error propagation of the position vector δrl

c and the velocity δvl
c can be deduced

with the total differentiation of Eqs. (8) and (9). Additionally, we must consider the following
equality [13]:

A{q + δq} = A
(
I + δφ×

)
, (10)

that describes the change of the transformation matrix A because of the orientation change δq.
δφ× is a skew-symmetric matrix of the vector φ, which represents the imaginary vector part of the
quaternion change δq. It follows that:

δrl
c = δri − Ai(ūi)×δφi + Aiδūi, (11)

δvl
c = δvi − Ai

(
ω̄i × ūi

)×
δφi − Ai(ūi)×δω̄i + Ai(ω̄i)×δūi, (12)
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where × stands for the skew-symmetric matrix of the observed vector. Analyzing Eqs. (11) and (12)
the errors δri, δvi, δφi and the angular rate error δω̄i, which can be simplified to the error of
the gyroscope bias δbi

ω, represent the group of errors that are related to the estimated position,
velocity, quaternion and bias parameter for the ith-body described by Eqs. (1)-(3) and (7). If these
parameters are observed within the state vector in the Kalman filter, using the theory of [19], their
errors should be normally distributed and their mean values should be equal to zero.

The remaining error δūi is the error of the estimated position vector ūi. This error mechanism
cannot be assumed to be normally distributed, because it is hard to achieve the accuracy of the
position vector ūi to the level of the measurement-tool accuracy in everyday practice. Such a case
could be the exact position of the accelerometer, which is hidden inside the inertial unit. Further,
the accessibility to the kinematic joints could be reduced and consequently, the position vectors
could only be estimated. Furthermore, the measurement tool could have inadequate accuracy.
Therefore, the error vector δūi can only have an initial estimation. However, if the error mecha-
nism, which has an influence on the observation constraint, is not normally distributed there might
be inferior performance from the Kalman filter, which can also lead to a divergence.

Therefore, an accurate estimation of the position vectors from the inertial units to the kinematic
joints represents an important step toward an accurate estimation of the kinematic parameters. In
the following step the procedure for minimizing this error will be deduced.Fig. 2 presents the same
arbitrary rigid bodies with the kinematic joint as Fig. 1, with the difference being that there is an
arbitrary number of inertial units on each body. Consider the position vector ui

mn between the
mth-unit and nth-unit on the ith-body, expressed in the reference frame:

ri
n − ri

m = ui
mn. (13)

In addition, the following relation can be written regarding the equality of the description of the
position vector rl

c = rl
c,m = rl

c,n of the kinematic joint Cl with respect to the mth-unit and the nth-unit
on the ith-body:

rl
c,n − rl

c,m = ri
n + ul,i

n − ri
m − ul,i

m = ri
n + Ai

nūl,i
n − ri

m − Ai
mūl,i

m = 0, (14)

where ul,i
m and ul,i

n represent the position vectors from the mth-unit and the nth-unit on the ith-body
to the arbitrary lth-kinematic joint. The ¯ above these vectors indicates that they are expressed
in the local sensor frames. Furthermore, considering Eqs. (13) and (14) it is possible to show the
following relation:

ul,i
m − ul,i

n = ui
mn. (15)

Finally, the error propagation of the position vector δrl
c,m and the velocity vector δvl

c,m of the l-
kinematic joint with respect to the ith-body can be written with a consideration of Eq. (15):

δrl
c,m = δri

m − Ai
m(ūl,i

m)×δφi
m +

(
δul,i

n + δui
mn

)
, (16)

δvl
c,m = δvi

m − Ai
m

(
ω̄i

m × ūl,i
m

)×
δφi

m − Ai
m(ūl,i

m)×δω̄i
m + (ωi

m)×
(
δul,i

n + δui
mn

)
, (17)

whereωm represents the angular rate of the mth-unit expressed in the reference frame. Analogously,
we can write the error propagation of the position vector δrl

c,n and the velocity vector δvl
c,n of the
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lth-kinematic joint. However, in Eqs. (12) and (13) there is another error mechanism δui
mn, which

is related to the error of the position vector between the mth and nth-units. In contrast to the errors
δul,i

m and δul,i
n , the amplitude of δui

mn can be minimized if the position vector ui
mn is controlled when

the inertial units are placed on the rigid body. This action is possible in practice with a planned
allocation of inertial units. δui

mn can be minimized to the accuracy level, which is negligible
compared to the amplitude of the bodies’ movement. If the described assumption is fulfilled,
the position vectors from the inertial units to the kinematic constraints can be estimated together
with the kinematic and sensor parameters within the state vector in the Kalman filter, because
the position vectors between the inertial units, such as ui

mn, represent the additional positional
constraints.

3. Formulation of the kinematic model

3.1. Process model
In general, the kinematic parameters described with Eqs. (1)-(5) can be observed at every

point on the arbitrary ith-body, where the inertial units are attached. However, while the position
and velocity vectors differ between each other during the motion in these points, the orientation
of the ith-body remains the same. Therefore, in order to reduce the number of sensors on every
body, the arbitrary n number of inertial units actually represents the n number of accelerometers
and only one gyroscope. If the angular rate is measured at the mth-unit, then the state vector xi of
the kinematic and sensor parameters on the ith-body can be written as:

xi =
(
(ri

1)T , (vi
1)T , (bi

a,1)T , · · · , (ri
m)T , (vi

m)T , (bi
a,m)T , · · · , (qi

m)T , (bi
ω,m)T

)T
=

=
(
(xi

1)T , · · · , (xi
m)T , · · · , (qi

m)T , (bi
ω,m)T

)T
. (18)

If the system consists of n rigid bodies, then the state vector x of all the observed kinematic and
sensors parameters is:

x =
(
(x1)T , · · · , (xi)T , · · · , (xn)T

)T
(19)

Considering the assumption of observing the position vectors from the inertial units to the kine-
matic joints, a state vector xu can be additionally written:

xu = ((ū1,1
1 )T , · · · , (ūl,i

m)T , · · · )T . (20)

These position vectors are modeled as constants; therefore, the arbitrary position vector ūl,i
m from

the mth-inertial unit on the ith-body to the lth-kinematic joint between two successive time steps is
calculated as:

ūl,i
m,k+1 = ūl,i

m,k. (21)

Finally, all the observed parameters are joined in the state vector xkin:

xkin =
(
xT , xT

u

)T
. (22)
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The nonlinear relation between the two successive observation steps of the state vector xkin de-
scribes a function f kin:

xkin,k+1 = f kin(xkin,k, ās,1
1,k, ω̄

s,1
1,k, . . . , ā

s,i
m,k, ω̄

s,i
m,k, . . .) + wk (23)

where wk represents the process noise with the covariance matrix Qkin =

[
Q 0
0 Qu

]
= E[wkwT

k ].

Because the parameters of the state vector xkin have nonlinear relations, the extended Kalman
filter (EKF) is used in this study with the total formulation [20]. Therefore, the state transition
matrix Φk in k-th step is defined as:

Φk(xkin,k) =
∂ f kin(xkin,k)

∂xkin
. (24)

The details of the Kalman filter, followed by this research, are discussed elsewhere [14, 18, 19].

3.2. Observation model
Observing the kinematic constraints between the rigid bodies and the position vectors between

the inertial units on every rigid body, three types of observation equation can be defined:

1. Observation of the kinematic constraints: The number of these constraints depends on the
number and the types of the kinematic joints. In general, the mathematical description of
these joints, such as spherical, cylindrical, translational joint, etc., are discussed in details
by Shabana in [21]. Regarding the parameters in the state vector x the positional constraint
equations hcr, the velocity constraint equations hcv and the orientational constraint equations
hcφ should be defined if they are possible. For the arbitrary lth-kinematic joint the constraints
are joined in the observation vector yl

c:

yl
c = hl

c (xkin) =


hl

cr (xkin)
hl

cv (xkin)
hl

cφ (xkin)

 = 0. (25)

For the rigid-body system all the available kinematic constraints are joined in the following
observation vector:

yc = hc(xkin) =
(
(h1

c)T , · · · , (hl
c)

T , · · ·
)T

= 0, (26)

2. Observation of the kinematic parameters at different positions on every rigid body: These
observations relate to Eq. (13). Because the inertial values are primarily expressed in the
local coordinate systems of the inertial units, we first write the transformation matrix Amn

that describes the relation between the local coordinate systems of the arbitrary mth- and
nth-inertial units:

Ai
n = Ai

m Ai
mn, (27)

The transformation matrix Amn is constant if the inertial units are fixed on the rigid body.
Assuming the observation in the coordinate system of the mth-inertial unit, the positional and
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velocity constraints in the vector yi
I,mn can be defined between the origin of the mth- and the

nth-inertial units on the ith-body, based on the known position vector ui
mn, which is written as

ūi
m,mn in the mth-coordinate system:

yi
I,mn = hi

I,mn(xi
m, x

i
n, ū

i
m,mn) =

(
ri

n − ri
m − Ai

mūi
m,mn

vi
n − vi

m − Ai
m(ω̄i

m × ūi
m,mn)

)
= 0. (28)

Observing the whole system the observation vector yI can be written as:

yI = hI(x) = ((y1
I,12)T , · · · , (yi

I,mn)T , · · · )T = 0. (29)

3. Observation of the position vectors from the inertial units to the kinematic joints: The third
group of observation equations comes from Eq. (15). Observing the position vectors from
the arbitrary mth- and nth-inertial units on the ith-body to the lth-kinematic joint, the observa-
tion vector yl,i

u,mn is:

yl,i
u,mn = hl,i

u,mn(ūl,i
m , ū

l,i
n , ū

i
m,mn) = ūl,i

m − Ai
mnūl,i

n − ūi
m,mn = 0. (30)

Regarding all the difference vectors on all the rigid bodies, the observation vector yu is
defined as:

yu = hu(xu) = ((y1,1
u,12)T , · · · , (yl,i

u,mn)T , · · · )T = 0. (31)

The second and third groups of the observation equations can be defined because of the use of
the multiple inertial units on every rigid body and, consequently, they represent the additional
conditions for the correction of the kinematic parameters within the state vector xkin. All three
groups of observations are grouped into the observation vector y:

y = h(xkin) = (yT
c , y

T
I , y

T
u )T . (32)

The matrix H represents the relation between the predicted state x̂ −kin and the observations at
the linearization point of the function h and is defined as:

H =

 Hc

HI

Hu

 =


∂hc
∂xkin
∂hI
∂xkin
∂hu
∂xkin

 . (33)

The covariance matrix R of the normally distributed observation deviations is also divided into
three parts:

R =

 Rc 0 0
0 RI 0
0 0 Ru

 . (34)

The covariance matrix Rc in practice depends on the tightness conditions in the joints, while
the covariance matrices RI and Ru depend on the accuracy of the allocation of the inertial units
between each other on every rigid body. The part of RI that relates to the velocity observations,
also depends on the normally distributed angular rate noise. Consequently, the expected deviation
in the kinematic joints and the accuracy of the inertial unit positioning also influence the accuracy
of the observed state vector xkin.
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3.3. Adaptive estimation of the joint position vectors
The initial estimation of the covariance matrix Qu describes the initial, normally distributed

deviations of the position vectors from the inertial units to the kinematic joints. If the position
vectors in xu converge to the exact values, then the values of the covariance matrix Qu should
decrease over time. For the optimum operation of the Kalman filter the covariance matrix Qu must
be adjusted with respect to the estimated deviation of the position vectors in xu.

The deviation of the state vector xu can be estimated in every kth-step of the Kalman filter when
the predicted vector x̂ −u,k+1 is compared to the observation vector yu,k+1:

∆yu,k+1 = yu,k+1 − Hu,k+1 x̂ −u,k+1, (35)

where ∆yu,k+1 represents the residual error of the position vectors from the inertial units to the
kinematic joints. If the state vector xu converges to the true value, the covariance matrix Qu
must be adjusted in such a way that the residual error ∆yu,k+1 is minimized. In this study the
minimization process follows the approach in [14] and is adapted for the estimation of the state
vector xu.

For every pair of position vectors ul,i
m and ul,i

n on the ith-body the minimization equation J(µi)
can be written [14]:

J(µi) = |∆yi
u,k+1(∆yi

u,k+1)T − Si−
k+1(µi)|2, (36)

where | | stands for the Frobenius norm of the observed matrix. Vector ∆yi
u,k+1 consists of all the

residual errors that can be determined on the ith-body using arbitrary yl,i
u,mn vectors:

∆yi
u,k+1 =


∆yl,i

u,12,k+1
...

∆yl,i
u,mn,k+1
...

 . (37)

Si−
k+1 represents the part of the Kalman gain factor S−k+1 that relates to the covariance matrix of the

residual error ∆yi
u,k+1. S−k+1 follows as [14]:

S−k+1 =
(
Hk+1 P−k+1HT

k+1 + Rk+1

)−1
. (38)

µi is a minimization factor for the adjustment of the covariance matrix Qu at the position of the
subcovariance matrices Qi

u,1, . . . , Qi
u,m, . . . on the ith-rigid body. It is deduced in [14] that the factor

µi is defined as:

µi =
tr(∆yi

u,k+1(∆yi
u,k+1)T − N1)LT

1

tr(L1LT
1 )

(39)

and

µi =

{
µi; µi > 0
0; µi ≤ 0 . (40)
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The components N1 and L1 in Eq. (34) are calculated as follows [14]:

N1 = H?
u,k+1IH?T

u,k+1, (41)

L1 = H?
u,k+1 P?

k+1H?T

u,k+1 + R?
k+1. (42)

The matrices H?
u,k+1, P?

k and R?
k+1 represent the parts of the matrices Hu,k+1, P−k+1 and Rk+1 in

the Kalman filter that relate to the position vectors from the inertial units to the kinematic joints
on the ith-body:

H?
u,k+1 =


Hl,i

u,12,k+1
...

Hl,i
u,mn,k+1
...

 , (43)

P?
k+1 =



P−
ul,i

1 ,k+1
· · · · · · 0

...
. . .

...
... P−

ul,i
m ,k+1

...

0 · · · · · ·
. . .


, (44)

R?
k+1 =


Rl,i

u,12,k+1 · · · · · · 0
...

. . .
...

... Rl,i
u,mn,k+1

...

0 · · · · · ·
. . .


. (45)

When the coefficient µi is determined, the adapted covariance matrices of the position vectors from
the inertial units to the arbitrary lth-kinematic joint on the arbitrary ith-body are:

Ql,i
u,1 = . . . = Ql,i

u,m = . . . = µiI. (46)

3.4. Discussion on the kinematic model
The presented kinematic model is deduced generally for the multiple inertial units on every

rigid body with controlled position vectors between the inertial units. Fig. 3 summarize the appli-
cation of the proposed process and the observation model within the Kalman-filtering iteration.
However, the use of the multiple inertial units on every rigid body would result in unnecessary
costs and processing power, especially if large systems would be observed. Therefore, the pre-
sented approach would follow the simplification of the use of only two inertial units on every rigid
body, because in this case the condition of the controlled position vectors is also satisfied. The
selection of the same number of accelerometers was also made in practice by Cheng [12], where
he showed an improved performance of the angle determination at lower rotation speeds.

In Sec. 2.2 we consider the constant position vectors from the inertial units to the kinematic
joints. However, the presented approach should not differ if these position vectors are time depen-
dent, because we showed in Sec. 3.1 that they are included in the state vector xkin. On the other
hand, the advantage of the constant position vectors from the inertial units to the kinematic joints
is the possibility of their elimination from state vector xkin, when they converge to the real values.
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4. Experimental validation

4.1. Experimental set-up
The experimental validation of the developed model was made on a two-degrees-of-freedom

(DoF) pendulum. Fig. 5(a) presents the scheme of the pendulum, which consists of two equal
(l1

b = l2
b) 0.8-meter-long block rods, while Fig. 5(b) shows the set-up in the laboratory. In the

system of two rigid bodies (i = {1, 2}) there are two rotational joints (l = {1, 2}). The first joint
connects the pendulum to the fixed base and the second joint connects the rigid bodies. The origin
of the reference coordinate system xnynzn is in the center of the first rotational joint, where yn is
oriented in the opposite direction to the acceleration due to gravity g with accuracy of 0.5◦. Next,
we continue to the deduction in Sec. 3.4 and we use two inertial units on every body (m = {1,2}).
In the resting position, the local coordinate systems of the inertial unit have the same orientation
as the reference coordinate system.

The measurement of accelerations and angular rates was made with the miniature inertial units
CH-6d that consists of a tri-axis ±3g accelerometer ADXL335, a two-axis ±400 ◦/s gyroscope
LPR510ALH and a single-axis ±400 ◦/s gyroscope LY510ALH. The enlarged figure of one of the
inertial units on the pendulum is presented in Fig 6(a). The deterministic parameters of the sensors,
such as the sensitivity and bias values, were determined with the autocalibration procedures. The
calibration of the accelerometers follows the method presented by Frosio [22] and the calibration
of the gyroscopes follows the procedure described by Syed [23]. On the other hand, the stochastic
parameters of the sensors for the determination of the covariance matrix Q were determined after
a 24-hour test in the resting position at a controlled temperature of 25◦ with the Allan deviation
procedure as described in [17].

Two 12-bit absolute encoders Contelec Vert-X28 with an accuracy of 0.1◦ were used as a
reference system for the observation of the relative angles in the joints and, consequently, for the
calculation of the other kinematic parameters. They were fixed in the rotational joints, as shown
in Fig. 6(b) for the second joint between the first and the second body.

According to the proposed indexation of the position vectors from the inertial units to the
kinematic joints in Sec. 2, and with the help of Fig. 5(a), the following vectors stand for the
pendulum:

ū1,1
1 = (0, 0.15, 0)T m, ū1,1

2 = (0, 0.65, 0)T m, ū2,1
1 = (0,−0.648, 0)T m,

ū2,1
2 = (0,−0.148, 0)T m, ū2,2

1 = (0, 0.15, 0)T m, ū2,2
2 = (0, 0.65, 0)T m.

(47)

Consequently, the difference of the position vectors between the inertial units on each rigid body
using Eq. (15) are:

ū1
12 = (0,−0.5, 0)T m, ū2

12 = (0,−0.5, 0)T m. (48)

The numerical values of the position vectors in Eq. (47) will be used as the reference values for
the observed position vectors, while the vectors ū1

12 and ū2
12 will be used in the observation part of

the Kalman filter. For the purposes of the experimental validation the accuracy of the positioning
of the inertial units was within 0.4 millimeters. However, in order to simulate the inaccurate
positioning of the inertial units, the initial error was set for the position vectors in Eq. (47) with a
standard deviation of 2.5 centimeters, which represents an error of 3% of the length of every rod.
This value was also used for building the initial covariance matrix Qu.
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According to Eq. (27) the initial difference in the orientation of the inertial units must be de-
termined despite the fact that the positioning of the inertial units on each rigid body is controlled.
Using the comparison of the response of the calibrated accelerometers in different static posi-
tions, the matrices A1

12 and A2
12 can be defined using the least-squares method. For the case of

the proposed experiment these matrices are functions of the following Euler angles with the zyx
successive rotations [21]:

Θ1
12 = (0.36◦,−0.4◦, 0.81◦)T , Θ2

12 = (0.54◦, 0.02◦,−0.45◦)T . (49)

For the experimental validation we proposed a combination of the different motion regimes.
From the initial resting position, the pendulum was forced into accelerated motion. During the
motion the pendulum was exposed to accelerations and decelerations until it swung back to the
initial position. The motion was observed for approximately six minutes. For reasons of clarity,
Fig. 7(a) presents the change of the absolute angle in the rotational joint with respect to the refer-
ence frame in the first minute of motion, while Fig. 7(b) presents the change of the absolute angle
in the last minute, when the pendulum swung down.

4.2. Kinematic model of a 2-DoF pendulum
For the observed 2-DoF pendulum, according to Eq. (18) the state vectors x1 and x2 that

describe the kinematic and sensor parameters for the first and second rigid bodies can be defined
as:

x1 =
(
(r1

1)T , (v1
1)T , (b1

a,1)T , (r1
2)T , (v1

2)T , (b1
b,2)T , (q1

t )T , (b1
ω)T

)T
, (50)

x2 =
(
(r2

1)T , (v2
1)T , (b2

a,1)T , (r2
2)T , (v2

2)T , (b2
b,2)T , (q2

t )T , (b2
ω)T

)T
, (51)

As shown in Fig. 5(a), the state vector xu of the position vectors to the kinematic constraints
for the observed pendulum can be written considering Eq. (20):

xu =

((
ū1,1

1

)T
,
(
ū1,1

2

)T
,
(
ū2,1

1

)T
,
(
ū2,1

2

)T
,
(
ū2,2

1

)T
,
(
ū2,2

2

)T
)T
. (52)

Using Eqs. (22) the state vector xkin of the kinematic model is therefore:

xkin =
(
(x1)T , (x2)T , xT

u

)T
. (53)

Furthermore, the observation vector y in Eq. (32) follows to the separation on three parts. The
vector of kinematic constraints yc in the kinematic joints regarding Eq. (26) is defined as:

yc =
(

(h1
cr)

T , (h1
cv)T , (h1

cφ,1)T , (h1
cφ,2)T , (h2

cr)
T , (h2

cv)T , (h2
cφ,1)T , (h2

cφ,2)T
)T

=

=



r1
1 + r1

2 + A1
(
ū1,1

1 + A1
12ū1,1

2

)
v1

1 + v1
2 + A1

(
ω̄1×

(
ū1,1

1 + A1
12ū1,1

2

))
(en

z )T
(
A1e1

x1

)
(en

z )T
(
A1e1

y1

)
r1

1 + r1
2 + A1

(
ū2,1

1 + A1
12ū2,1

2

)
− r2

1 − r2
2 − A2

(
ū2,2

1 + A2
12ū2,2

2

)
v1

1 + v1
2 + A1

(
ω̄1×

(
ū2,1

1 + A1
12ū2,1

2

))
− v2

1 − v2
2 − A2

(
ω̄2×

(
ū2,2

1 + A2
12ū2,2

2

))
(en

z )T
(
A2e2

x1

)
(en

z )T
(
A2e2

y1

)


= 0, (54)
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where h1
cr represents the positional constraints in the rotational joint between the base and the first

rod. Two independent constraints with respect to the first and second inertial frames on the first
body:

r1
1 + A1ū1,1

1 = 0, r1
2 + A1 A1

12ū1,1
2 = 0 (55)

are simplified in one equation to minimize the total number of equations. Similarly, the function
hcv represents the velocity constraints in the first joint, while h2

cr and h2
cv stand for the positional

and velocity constraints in the second joint. The functions h1
cφ,1, h1

cφ,2, h2
cφ,1 and h2

cφ,2 stand for the
constraints that are related only to the rotational joint. The rotation is available only around the
zn-axis in the reference frame. These constraints are not dependent on the positional and velocity
constraints; therefore, they are written with the unity vectors en

z , e1
x1

, e1
y1

, e2
x1

and e2
y1

, which are
expressed in the appropriate coordinate frames.

The observation vector yI with respect to Eq. (29) is defined as:

yI =

(
h1

I,12(x1, ū1
1,12)

h2
I,12(x2, ū2

1,12)

)
=


r1

2 − r1
1 − A1ū1

1,12
v1

2 − v1
1 − A1((ω̄1)×ū1

1,12)
r2

2 − r2
1 − A2ū2

1,12
v2

2 − v2
1 − A2((ω̄2)×ū2

1,12)

 = 0, (56)

and finally, the observation vector yu with respect to Eq. (31) follows as:

yu =


h1,1

u,12(ū1,1
1 , ū1,1

2 , ū1
1,12)

h2,1
u,12(ū2,1

1 , ū2,1
2 , ū1

1,12)
h2,2

u,12(ū2,2
1 , ū2,2

2 , ū2
1,12)

 =


ū1,1

1 − A1
12ū1,1

2 − ū1
1,12

ū2,1
1 − A1

12ū2,1
2 − ū1

1,12
ū2,2

1 − A2
12ū2,2

2 − ū2
1,12

 = 0. (57)

The covariance matrix R using Eqs. (34) was defined according to the expected deviations in the
kinematic constraints. The covariance matrix Rc depends on the tightness in the joint bearings.
Because of the tight connection the positional deviation was set to 0.1 millimeter. Furthermore,
the positional deviations in the covariance matrices RI and Ru depend on the accuracy of the
measurement tool or on the accuracy of the positioning procedure between inertial units. In this
study, the deviation was found to be 0.4 millimeter. On the other hand, the deviations of the
velocity constraints depend mainly on the normally distributed noise in the angular rate data. The
orientational constraints were limited to a 0.1◦ deviation.

4.3. Analysis of the experimental results
In the experimental analysis the presented adaptive Kalman formulation with the estimation

of the position vectors from the inertial units to the kinematic joints (KF1) will be compared with
the formulation that does not consider the estimation of the position vectors from the inertial units
to the kinematic joints in the state vector xkin (KF2). However, the results calculated straightfor-
wardly from the inertial data will not be presented because the errors increase enormously in a few
seconds.

In the first step the errors of the kinematic parameters are examined. Fig. 8 presents the abso-
lute error value of the position vector r1

1 on the first body and of the position vector r2
2 on the second

body, expressed in the reference frame. The results show the minimized and steady errors of the
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position vectors when the KF1 formulation with the adaptive estimation is used. In contrast, the
KF2 formulation also shows steady, but higher, absolute errors. These errors are the consequence
of the inaccurate initial estimation of the position vectors from the inertial units to the kinematic
joints and, furthermore, they influence the assumption of the Kalman filter that the error of the
observation vector yc is normally distributed with the zero mean value. A larger deviation of the
position vector r2

2 is related to the fact that this inertial unit has the greatest distance from the base
of the pendulum. Therefore, when the pendulum is accelerated or decelerated, a possible move-
ment in the zn-axis can reduce the performance of the filter. When the pendulum swung down the
error also decreases. Regarding the size of the pendulum in Fig. 5 and the large angle changes
over time in Fig. 7, the constant error under 2% shows the appropriate approach when using the
adaptive formulation.

Fig. 9 shows the absolute error of the velocity vectors v1
1 on the first body and v2

2 on the second
body in the reference frame. The KF1 formulation shows better or equivalent results compared to
the KF2 formulation. However, there is a clear difference in the error values when the pendulum is
in the resting position or when it moves between 10 and 250 seconds. The difference can be related
to the noise in the angular rate data, which affects the observations in Eqs. (54) and (56). How-
ever, the absolute errors are consistently under 2%, which again supports the use of the proposed
adaptive filter.

Another kinematic parameter is the orientations of the rigid bodies. Fig. 10 presents the ab-
solute angle error around the zn-axis in the reference frame. The angle is calculated from the
estimated quaternion [13]. KF1 again shows a better angle estimation over the KF2 formulations.
The errors of the KF1 and KF2 approaches have constant zero mean values over time. Better
results of the KF2 formulation, which shows inferior positional and velocity results, are the conse-
quence of good orientation constraints in the rotational joint and because the position vectors from
the inertial units to the kinematic joint do not directly affect the orientation constraints in Eq. (54).

In the second step the estimation of the position vectors from the inertial units to the kinematic
joints is discussed. Fig. 11 shows the absolute sum of all the position-vector errors. When using the
adaptive approach the initial error value of 0.1704 meter decreases to a value of 0.0274 meter over
approximately 100 iterations and stays constant or changes negligibly over the entire observation
time. Considering the estimated and the reference position vectors in Eq. (47) the error vectors
can be calculated:

∆ū1,1
1 = (0,−0.0002, 0.013)T m, ∆ū1,1

2 = (0,−0.0004, 0.013)T m,
∆ū2,1

1 = (0, 0.0018,−0.0123)T m, ∆ū2,1
2 = (0, 0.0018,−0.0123)T m,

∆ū2,2
1 = (−0.0017,−0.0011, 0.01)T m, ∆ū2,2

2 = (−0.0017,−0.0011, 0.01)T m.
(58)

The deviations in the x and y-axis in the local frames show a negligible error, while the errors
in the z-axis in the local frames deviate constantly by around 1 centimeter. These deviations can
be related to the positioning and orientation of the inertial units on the rigid bodies with respect
to the reference frame, because the motion is tightly restricted in the z-axis of the reference and
local frames, but in practice there could be minor deviations. However, the rapid convergence
of the position vectors from the inertial units to the kinematic joints is the consequence of the
the adaptive approach, which adjust the initial covariance matrix Qu toward the zero values with
respect to the residual error of the observed position vectors.
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The use of the adaptive approach with multiple inertial units on every rigid body might cause
a problem with the observation of the state vector xkin in real time if there are many bodies in
the system or if there are many constraint equations. For these reasons the approach with the
multiple inertial units can only provide the calibration procedure for the estimation of the position
vectors. On the other hand, when the position vectors from the inertial units to the kinematic joints
converge, the redundant kinematic parameters in the state vector xkin and in the observation vector
y can be eliminated in a way that we observe the kinematic parameters with only one inertial unit
on every rigid body.

In the last step the estimation of the sensors’ bias vectors is discussed. Fig. 12 shows the
estimation of the bias values on the selected axes of the accelerometer and the gyroscope. Despite
the assumptions of the exponentially correlated change of the bias values, the figures show that
the bias can also change because of the other influences, such as the change of the temperature
or the internal changes in the sensors, which do not have the exponentially correlated stochastic
behavior. The Kalman filter considers the estimation of the bias values with respect to the process
and observation formulation.

5. Conclusion

In this study we present an approach to minimize the error of the kinematic parameters of a
rigid body system due to the inaccurate positioning of the inertial units on the rigid body for the
case when only the kinematic constraints are used for the correction of the inertial principle within
the Kalman formulation. Based on the error propagation of the observation equations a general
approach to the use of multiple inertial units on every rigid body is deduced if we are able to
control the position vectors between the inertial units. The method was experimentally validated
on a simple pendulum mechanism with the use of the minimum number of inertial units. We
confirmed that the adaptive formulation gave better results than the standard formulation without
an estimation of the position vectors from the inertial units to the kinematic joints.

The proposed approach has an advantage when we do not know the dynamics of the observed
mechanism in advanced, because the independent and dependent parameters are observed simulta-
neously in the state vector. Therefore, this approach offers a quick solution in applications. On the
other hand, we must be aware that increasing the number of rigid bodies in the system or possibly
a larger number of inertial units can cause problems with the processing power. From the latter
point of view this approach can represent a calibration procedure for the estimation of the position
vector from the inertial units to the kinematic joints before the kinematic parameters are eventually
observed.

The accuracy of the kinematic parameters when only the kinematic constraints are observed
depends not only on the accurate positioning of the inertial units, but in general on the level of
accuracy in the observation equations. A high level of noisy observation or a deviation from the
assumed normally distributed noise can result in poorer performance or divergence of the Kalman
filter. However, industrial mechanisms usually have well-defined constraints, and therefore the
presented approach offers an appropriate alternative.
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Figure 1: Observation of the arbitrary kinematic constraint with one inertial unit on each rigid body.
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Figure 4: 2-DoF pendulum.
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(a) Pendulum scheme. (b) Pendulum set-up in the lab-
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Figure 5: 2-DoF pendulum.
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(a) Inertial unit CH-6d. (b) Encoder fixing in the rotational
joint between two rigid bodies.

Figure 6: Inertial unit CH-6d and encoder positioning in the rotational joint.
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Figure 7: Absolute angle in rotational joint with respect to the reference frame: a) first joint, b) second joint.
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Figure 8: Absolute error of the position vector.
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Figure 9: Absolute error of the velocity vector.
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Figure 10: Error of the absolute angle around zn-axis.
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Figure 11: Sum of the absolute errors of the components of the position vectors from the inertial units to the kinematic
joints.
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Figure 12: Bias estimation.
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