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Abstract 

Randomly excited structures are exposed to random stress loads that can result in fatigue failure. Prediction of such failure 
requires good structural dynamics and fatigue models. This study researches the multiaxial criteria which reduce the 
multiaxial stress state to an equivalent uniaxial stress. Several frequency-domain criteria can be found in literature. However, 
experimental comparison studies are scarce. This research presents and then theoretically and experimentally compares 
selected frequency-domain multiaxial criteria, namely: maximum normal stress, maximum shear stress and the C-S criterion. 
Time-to-failure results are compared across multiaxial criteria and with experimental data. Results show that selected 
methods give reliable estimates. 
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1. Introduction 

Material fatigue as a consequence of a broad-band random stress load is a known phenomenon [1, 2]. 
However, most of established fatigue analysis procedures (e.g. Palmgren-Miner, S/N curve [3, 4, 5]) are usually 
only derived for analysis of uniaxial stress. In real structure, a complex multiaxial stress state develops. 
Furthermore, in the presence of more than one vibration source, the principal stresses are not proportional and the 
orientation of principal axes changes in time [2]. Such stress state cannot be directly analyzed for fatigue but is 
rather reduced to a uniaxial stress state through the use of a multiaxial criterion [1, 2, 6]. 

Characterization of vibration fatigue calls for special methods that can be applied in the frequency-domain, on 
random response states. The process of analysis consists of the following steps: 

 
 stress response deduction [7, 8], 
 equivalent uniaxial stress calculation [1, 2], 
 cycle counting and damage summation [9, 10, 11]. 
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This study focuses on experimental comparison of multiaxial criteria in the frequency-domain, quite a few of 
which can be found in literature [1, 6, 12, 13, 14, 15] as well as some comparison studies [6, 14, 15]. This study 
experimentally compares side-by-side the following multiaxial criteria in the frequency-domain: maximum 
normal stress, maximum shear stress and the CS criterion. Experimental results are obtained using a Y-shaped 
specimen, which is excited until failure using predefined loads. 

The emphasis is on the analysis of a multiaxial stress state, resulting from multiple broad-band random 
loads.The Y-sample is excited with two electro-dynamic shakers in perpendicular directions, each producing 
random vibration in the frequency range of one particular modal shape. The stresses are calculated using the 
FEM method and actual measured loads from experiment. Multiaxial criteria are used to get the equivalent 
uniaxial stress and Tovo-Benasciutti [9] method is used to calculate time-to-failure. Numerical results are then 
compared across different multiaxial criteria and with experiment. 

 
Nomenclature 

a vector of coefficients for a certain spectral multiaxial criterion 
a(ω) vector of accelerations in frequency-domain 
C covariance matrix 
CCS rotation matrix used with the C-S multiaxial criterion 
G(ω) one sided power spectral density 
Gseq(ω) equivalent uniaxial stress power spectral density 
GCS(ω) stresses on a critical plane as determined by the CS criterion 
Gs(ω) cross-correlation matrix of stress tensor component in frequency-domain 
Has(ω) frequency-transfer function from acceleration to stress 
l, m, n directional cosines of principal axes 
mi moment of power spectral density 
Sxx,xx(ω) auto-correlation of stress tensor component 
Sxx,yz(ω) cross-correlation of two stress tensor components 
ν peak rate 
ω  angular frequency 
σxx,xx

2 variance of a specific stress tensor component 
σxx,yz

2 covariance of specific stress tensor components 
σseq

2 variance of equivalent uniaxial stress according to a certain multiaxial criterion 
σaf,-1 fully reversed bending fatigue limit 
τaf,-1 fully reversed torsion fatigue limit 

 

2. Theoretical background 

To facilitate a better understanding of vibration fatigue and multiaxial criteria, theoretical fundamentals are 
presented in this section. Initially, some details on the random processes [16] are given. Next, some structural 
dynamics [7] details are presented for their crucial role in deducing the stresses that arise in material due to 
vibratory loads. Finally, the procedure of calculating equivalent stresses (i.e. the multiaxial criteria) is presented 
[1]. 

2.1. Random processes 

Most research in the field of vibration fatigue is based on normal-distributed random processes, ordinarily 
described by a one-sided power-spectral density G(ω) (PSD) as a function of angular frequency ω. The random 
process is further characterized by moments of the PSD mi, which give information about properties of the 
process in time-domain, such as variance σ2 = m0 or peak rate ν: 

0

( )i
im G d    (1) 



461 Matjaž Mršnik et al.  /  Procedia Engineering   101  ( 2015 )  459 – 466 

 

4

2

m
m    (2)  

Based on these moments, cycle amplitude distribution of the random process can be estimated, using cycle-
counting methods in frequency domain, such as Dirlik [10] or Tovo-Benasciutti [9]. Using material data in the 
form of an S/N curve and Palmgren-Miner hypothesis [4, 5], fatigue damage or time-to-failure can be deduced, 
which is part of the standard high-cycle fatigue analysis routine. This is for a simple uniaxial stress state, while 
complex multiaxial stress states calls for special approach with multiaxial criteria. 

2.2. Structural dynamics analysis 

Structure can be modeled with FEM method as a linear multi-degree-of-freedom system. Frequency analysis 
solution provides a modal model (i.e. eigenfrequencies, eigenvectors) which can be used to deduce the transfer 
functions from one point on the structure to the next. For the case of kinematic excitation, the structural 
modification approach [8] is used to obtain the appropriate transfer functions. Knowing the correct transfer 
function matrices Has(ω) (accelerations-to-stress) and Hfs(ω) (force-to-stress) the random stress responses can 
then be calculated in the following way: 

( ) ( ) ( )s = asG H a    (3) 

where the stress tensor components are described in the frequency domain by a 6-by-6 cross-correlation matrix 
Gs: 
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2.3. Multiaxial criteria 

The conventional methods for fatigue analysis are based on uniaxial stress state. Multiaxial criteria are used to 
calculate an equivalent uniaxial stress state from a stress tensor and enable the use of cycle counting methods. 
These criteria are often based on failure and yield criteria used in static analyses, such as maximum normal stress 
criterion or von Mises. For vibration fatigue analysis, they are formulated in the frequency domain. The stress 
tensor in frequency domain Gs(ω), obtained using modal analysis is a 6-by-6 matrix from eq. (4), which has to be 
converted to a scalar function of angular frequency Gseq(ω). The process of reduction constitutes a multiaxial 
criterion in frequency domain. The equivalent stress Gseq(ω) on the critical plane is determined from the 
components of the original stress tensor, by means of directional cosines lj, mj and nj with j = 1, 2, 3 for the 
respective axis. The following multiaxial criteria are presented and compared side-by-side in this study: 
maximum normal stress, maximum shear stress and CS criterion. 

2.3.1. Criteria of maximum normal stress and maximum shear stress 
The maximum normal stress and maximum shear stress can be calculated in time-domain from the time-

dependent stress tensor components. A method based on six-input physical system is proposed in [1] that derives 
the equivalent stress PSD directly from frequency-domain PSD matrices from eq. (4): 

eq

T( ) ( )s sG aG a    (5) 

where a is a vector of coefficients, defined for the two criteria in Table 1.  
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Table 1. Coefficients for derivation of equivalent stress PSD. 

a Max. normal Max. shear 

a1 l1
2 (l1

2 – l3
2) 

a2 m1
2 (m1

2 – m3
2) 

a3 n1
2 (n1

2 – n3
2) 

a4 2 l1
 m1 2 (l1 m1 – l3 m3) 

a5 2 l1
 n1 2 (l1 n1 – l3 n3) 

a6 2 m1
 n1 2 (m1 n1 – m3 n3) 

 
All of these criteria are applied on the critical plane, which has to be determined beforehand. The 

straightforward way of doing this would be to calculate the value of the criterion on equally spaced planes and 
choose the plane that produces the most damaging spectrum. However, the calculation is much faster if only the 
variance of the criterion is compared for equally spaced planes. In the case of using the latter approach, there is 
only one value to deal with at each plane as opposed to a frequency-spectrum for total damage calculation. For 
that purpose, the covariance matrix C is calculated first: 

2 2
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xx xx xx yz

yz xx yz yz

C    (6) 

and the plane is then searched, that gives the maximum variance of the multiaxial criterion. This is done in 
accordance with eq. (5): 

eq

2 T
s aCa    (7) 

2.3.2. C-S criterion 
Carpinteri et al. proposed a way to calculate the mean principal stress directions based on cross-correlation 

matrix Gs(ω) [6]. The rotation matrix CCS is obtained by applying 5 successive rotations with 3 of them being 
based on the orientation of the mean principal angles (see [6] for more details). When the position of the critical 
plane is determined, the equivalent uniaxial stress Gseq is calculated as a combination, dependent on fully 
reversed bending and torsion limit σaf,-1 and τaf,-1: 

T
CS CS CS( ) ( )sG C G C    (8) 
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3. Experiment 

Two excitation sources – electro-dynamic shakers are used, to provide a sufficiently complex and general 
stress state inside the material, as shown in Fig. 1. In the vertical direction, the sample is excited using 
kinematical excitation with a controlled acceleration profile. In the horizontal direction, the specimen is excited 
using open-loop force excitation. Measured are the acceleration responses, mounted on the top of the sample 
with the purpose of extracting the respective modal shapes. Force load is measured at the tip of the stinger. 
Masses of 104.5g are mounted on the Y-sample on each branch, pushing the mode frequencies in the desired 
frequency range. 
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Fig. 1. Experiment setup. 

At the beginning of the experiment both excitation sources are powered on with predefined loads, consisting 
of uniform spectra in the specified range. For kinematic excitation, a uniform profile of amplitude x is controlled 
in the frequency range of 380 – 480 Hz. For force excitation, the current is applied to the amplifier with a 
uniform profile of y in the frequency range of 290 – 390 Hz. Due to fatigue, the structural response changes; 
when at least one of the modes which are monitored continuously goes out of the excited frequency range, the 
experiment is aborted. The load amplitudes for kinematic excitation are in the range of 0.7 – 1.7 GRMS and 
actively controlled. The load amplitudes for force excitation are in the range of 4 – 20 NRMS and are not 
actively controlled. Fig. 2 shows the measured FRFs for the respective modes in the frequency-range that is 
excited. 
 

 
 
 

 

Fig. 2. (a) force excited mode; (b) kinematicaly excited mode. 

4. Numerical model 

The Y-shaped specimen was analyzed using FEM method to extract the eigenmodes (see Fig. 3). Acceleration 
and stress-response functions were deduced based on eigenmodes, according to modal superposition method. 
Structural modification approach [8] was used for calculating response functions for kinematic base excitation. 
Viscous damping was applied in this process, identified on experimental data using the circle-fit method [7]. 
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Fig. 3. (a) undeformed specimen; (b) force excited mode, calculated at 355 Hz; (c) kinematicaly excited mode, calculated at 477 Hz. 

Multiaxial criteria from chapter 2.3 were applied in combination with the Tovo-Benasciutti [9] cycle counting 
method. Maximum variance method is applied to find the critical plane. Fully reversed bending and torsion 
limits, needed for the C-S criterion, were not known for the aluminum alloy tested (AlSi7Cu3). The following 
values were instead taken from literature [17] for alloy AlCuMg1: σaf,-1 = 161 and τaf,-1 = 97. The time-to-failure 
for each specimen was obtained from experiment and was taken when any mode frequency drops for more than 
5%. Material parameters were searched that minimized the deviation of calculated time-to-failure from 
experimental results, for each multiaxial criterion. 

5. Results and comparison 

The comparison of numerical and experimental results is shown in Fig. 4. Results are well within the ±300% 
band. It can be concluded that all specimens were loaded in the high-cycle fatigue regime, ranging from the 
estimated 1.5 × 106 of loading cycles for the shortest time-to-failure to the 7.9 × 106 loading cycles for the 
longest run. 

Estimates are better for the maximum shear stress criterion and for the C-S criterion. Furthermore, both 
maximum shear and C-S criteria give results that are very close. It should be mentioned, that the C-S criterion 
performance depends on some additional material parameters, namely fully reversed bending and torsion fatigue 
limit. These results were not obtained for the material used but from literature for another aluminum alloy. 

In general, all of the compared criteria give quite good estimate of time-to-failure for high-cycle fatigue of 
aluminum alloy component. 
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Fig. 4. (a) results for the maximum normal stress criterion; (b) results for the maximum shear stress criterion; (c) results for the C-S criterion. 

6. Conclusions 

Three different multiaxial criteria were experimentally compared side by side. 10 specially prepared specimen 
were driven to failure by simultaneous vibration originating from two sources in perpendicular directions, 
exciting two different modal shapes. Experiment was devised to thoroughly test multiaxial criteria in frequency 
domain by causing a complex multiaxial stress state inside material. 

Results from experiment were compared with numerically calculated time-to-failure estimates. Analysis 
shows that tested criteria can be used quite reliably to produce a time-to-failure estimate. However, since these 
criteria can be derived using different assumptions, material parameters that give best results with one of the 
criteria may not be best suitable for another. 

Estimate error originates from different parts of the analysis procedure. It is common to get large scatter in 
fatigue analyses but the source of error can also be elsewhere, e.g. in estimating modal frequencies and damping. 
With the aim of getting the best results possible, damping was measured for both excited modes at each sample 
and applied in numerical analysis for the respective sample. While the higher-frequency mode (kinematic 
excitation) was modelled well, the lower-frequency mode (force excitation) did deviate a bit from experimentally 
measured data. This could be a consequence of the way the force load is applied and could be one of the sources 
of error in the numerical model. 
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All in all, results show that the procedures applied in the course of this study can be used successfully for 
vibration fatigue analysis. Good estimates can be produced on structures that are excited with broad band loads 
near resonance and in multiple directions simultaneously. 
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