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Abstract

Experimental modal analysis (EMA) is a well-established procedure for de-

termining the modal parameters of a structure. Typically, a point-force is used

to excite the structure and the translational response is measured. When per-

forming an EMA, problems with a reliable modal-parameter estimation can arise

whenever a selected reference point is located in the proximity of a node for any

mode shape in interest. This problem can be addressed by performing multi-

reference measurements; however, a non-coincidental position with respect to

the remaining nodes cannot be guaranteed. In this research a novel modal-

identification method, based on multiple related experimental response models

at a single reference point, is proposed as an alternative to the established multi-

reference measurement. The idea is to combine multiple response models of the

same structure, acquired by different types of sensors (e.g., translational and

rotational) for which the nodes of the response-related modal shapes do not

coincide. The Least-Squares Frequency-Domain (LSFD) method is modified by

considering the mutual relations of the acquired response models. The proposed

methodology is experimentally validated on a homogeneous aluminium beam.
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The proposed method shows both a successful modal identification and an in-

creased consistency of the identified modal constants, despite the proximity of

the nodes to the selected reference point.

Keywords: experimental modal analysis, related response models, hybrid

LSFD, rotational degrees of freedom

1. Introduction

Experimental modal analysis is a reliable method for determining the true

modal parameters of a structure, despite the remarkable advances in numeri-

cal simulation. First, the frequency response is measured at several points of

the structure. Typically, a point-force excitation is performed with a modal

hammer or an electrodynamic shaker [1]. In addition, various techniques such

as moment [2, 3] or air-pressure-induced excitation [4] are also possible. The

response is usually measured with translational sensors (e.g., a piezo-electric

accelerometer [5], a laser vibrometer [6], a high-speed camera [7]), although ro-

tational [8, 9] or strain measurements [10, 11] can also be performed. Based

on the acquired response model, the modal parameters (i.e., the natural fre-

quencies, damping ratios and mode shapes) are identified. When analysing real

structures, advanced modal-identification methods, such as the Least-Squares

Complex-Frequency (LSCF) [12, 13] and the Least-Squares Frequency-Domain

(LSFD) [14] methods are often applied, as they can also be used with relatively

noisy and inconsistent data sets [15].

Another approach to determining the dynamic properties of structures is

operational modal analysis (OMA), where only the output is being measured.

This is convenient for several practical applications. Therefore, various methods

were developed to address the issues of output-only modal identification, such

as Modified Sparse Component Analysis by the Time-Frequency Method (SCA-

TF) [16] and the Frequency Domain Independent Component Analysis (ICA-F)

method [17]. Furthermore, the problem of closely spaced modes was addressed

in [18]. Output-only modal analysis is not a subject of this paper; however,
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some approaches presented are also applicable in the scope of OMA.

Within the paper, the full response model is considered as a set of FRFs,

obtained for every possible combination of the response and the excitation loca-

tion for a given discretized structure. When performing a classic EMA, a single

row or column of a full response model is theoretically sufficient to identify all

the modal parameters of a structure [1]. In order to obtain a single row, the ex-

citation is performed at multiple points, while the response is only measured at

a selected reference point. The procedure is reversed if a column measurement

is considered. However, when performing an EMA on real complex structures,

with the modal shapes still unknown, it is not uncommon for a selected reference

point to be placed in the proximity of a node for at least one of the significant

vibration modes. As a result, poorly detectable resonance peaks appear in the

measured frequency response functions (FRFs). These peaks are greatly af-

fected by noise and other measurement uncertainties. For highly uncertain res-

onance peaks, problems with a reliable modal-parameter estimation can occur,

even with the use of advanced methods, such as LSCF/LSFD [7]. Furthermore,

problems with a consistent mass normalization of the modal shapes can occur,

which is crucial for inferring the mass and stiffness properties of the system.

Several methods were developed to address the problem of optimum sensor

placement. The driving-point residue method was presented in [19] and an effec-

tive independence method was proposed in [20]. Information entropy was used

to measure the uncertainty of the model parameter estimates in [21], and large

finite-element models were addressed in [22]. However, all the listed methods

are based on a analytical or numerical model of the system under considera-

tion, which is not always available. Moreover, when dealing with complex real

structures, an arbitrary (optimum) reference point might not be accessible or

the sensor placement/excitation might not be physically possible. The problem

proves to be even more complex when a purely experimental approach is consid-

ered. Sometimes, it is practically impossible to find a suitable single reference

point to identify all the modes of interest [1]. In such a case, a multi-reference

measurement has to be performed; however, a non-coincidental position with
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respect to any of the remaining nodes cannot be guaranteed.

In this paper a novel hybrid methodology for modal-parameter identification

on near-to-node obtained response models is proposed. Instead of performing

multi-reference measurements, multiple related response models of the same

structure are obtained at a single reference point. The presented approach is

based on a combined measurement, using different types of sensors, for which

the nodes of the response-related modal shapes do not coincide. Thus, ade-

quately detectable resonance peaks are available for all vibration modes and a

consistent LSCF complex-eigenvalue identification can be performed. Further,

the standard LSFD method is modified by taking into account the mutual re-

lationships of the acquired response models. By using a proposed hybrid LSFD

method, the consistency of the estimated low-response-related modal constants

can be increased. Finally, an experimental study was performed, analysing

the bending vibration modes with a combined translational and rotational re-

sponse measurement. Compared to the standard LSFD method, a significant

improvement in the consistency of the modal constants is demonstrated when

the mode shapes reflect the node’s proximity to the selected reference point. As

a result, the accuracy of the identified mass-normalized mode shapes and the

noise-dominant areas of the reconstructed FRFs is increased.

This paper is organized as follows. The next section summarizes the basic

theory of related response and modal models, followed by an overview of the

modal parameter estimation (MPE) methods. In Section 3 the proposed hybrid

methodology for near-to-node MPE is outlined. In Section 4 the methodology

is validated on a laboratory experimental setup. Finally, conclusions are drawn

in Section 5.

2. Theoretical background

2.1. Response model

In experimental modal analysis, the response of a structure is typically ob-

tained in the form of frequency response functions. For a linear and time-
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invariant mechanical system in the steady state, the equation of motion in the

frequency domain can be given as:

X(ω) = H(ω) F(ω) , (1)

where X represents a response (labeled with index r) vector, whose length is

equal to the number of selected response points nr. Further, F denotes an

excitation (labeled with index e) vector of length ne, being equal to the number

of selected excitation points and H is a nr × ne matrix of frequency response

functions. For a general viscously damped system with N degrees of freedom,

a response model can be formulated as [23]:

H(ω) =

N∑
r=1

(
rA

iω − λr
+

rA
∗

iω − λ∗r

)
, (2)

with the asterisk denoting the value of the complex conjugate, i being the unit

imaginary number and rA denoting a nr ×ne matrix of modal constants1. The

system complex eigenvalue λr or the so-called pole contains information about

the natural frequency ωr and the damping ratio ζr at the r-th vibration mode:

λr = −ζr ωr ± iωr

√
1 − ζ2r . (3)

The matrix of modal constants rA is equivalent to the outer product of the nor-

malized mode shapes rΦ
r and rΦ

e, where the former is related to the response

and the latter to the excitation type of physical quantity.

In the case of a complementary excitation-response pair, e.g., force-displacement

or moment-rotation, the two mode shapes are identical. Therefore, the indices

e and r can be omitted, resulting in a symmetrical matrix:

1It should be noted that for a general viscously damped model, modal constants rA (also

being called residues) are not equal to the modal constants from a hysteretically damped

models and are also subjected to different normalization [23, 24].
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rA
com =



φ1r φ1r · · · φ1r φkr · · · φ1r φner

...
. . .

...
. . .

...

φjr φ1r · · · φjr φkr · · · φjr φner

...
. . .

...
. . .

...

φnrr φ1r · · · φnrr φkr · · · φnrr φner


, . (4)

As can be deduced from Equation (4), all the rows and columns are proportional

to the r-th mode shape. Therefore, it is theoretically sufficient to measure a

single row or column of the modal constants in order to identify all the modal

parameters. However, in the case of a non-complementary excitation-response

pair, e.g., force-rotation or force-strain, the formulation of modal constants ma-

trix exhibits non-symmetrical properties [11]:

rA
ncom =



φr1r φ
e
1r · · · φr1r φ

e
kr · · · φr1r φ

e
ner

...
. . .

...
. . .

...

φrjr φ
e
1r · · · φrjr φ

e
kr · · · φrjr φ

e
ner

...
. . .

...
. . .

...

φrnrr φ
e
1r · · · φrnrr φ

e
kr · · · φrnrr φ

e
ner


, (5)

where φrjr and φekr are the components of the mode shapes rΦ
r and rΦ

e, with the

indices j and k referring to the corresponding excitation and response points on

the structure, respectively. In this case it can be seen, that the rows and columns

of the modal matrix are proportional to the excitation and r-th response-related

mode shape, respectively.

2.2. Experimental modal-parameter estimation

When the dynamics of a structure is obtained experimentally, one typically

measures its frequency response for several inputs and outputs. Whenever a

response and excitation point coincide on the structure, the obtained FRF is

referred to as a driving-point function or a transfer function when the two differ.

In general, the dimensions of the acquired response model H(ω) are arbitrary,

whereas only an appropriate spatial resolution of the selected points is required
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to identify the mode shapes of interest. An experimental process to obtain either

an individual row or a column of the response model is shown in Figure 1.

excitation response

(a)

excitationresponse

(b)

Figure 1: Measurement of a response model: (a) Row; (b) Column.

Following the procedure in [24] and considering Eq. (5), mass-normalized

mode shapes can be determined from an arbitrary row or column of the response

model and only the appropriate complex scaling is to be performed. Unlike in

common practice with a complementary response-excitation sensor pair, differ-

ent types of mode shapes are obtained from a row or column, respectively, when

using a non-complementary sensor pair [25]. A comparison of the presented ap-

proaches is shown in Figure 2, referring to the combination of translational and

rotational response measurements and the point-force excitation.

One of the important features of an identified modal shape is the number

and the location of the corresponding nodes. A node is defined as a point with

zero amplitude for a certain modal shape. Whether a suitable combination of

sensors is used to perform the EMA, e.g., a translational and rotational sensor

or a translational and a strain sensor, the nodes of the individual response-

related modal shapes typically do not coincide. According to the principles of

continuum mechanics [26], the rotational components are conditioned by the

off-diagonal elements of the deformation gradient. Assuming that the reference

point, if located in the proximity of the local minimum of the displacement field,

a pronounced rotational response can therefore be expected. Accordingly, the

translational and rotational mode shapes can be expected to have complemen-

tary properties in the case of a transverse response. Greater generality could

be achieved by introducing the deformation sensors, since they can be used to

measure both the normal and the shear components of the deformation tensor.
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Figure 2: Response-excitation pair type: (a) Complementary; (b) Non-complementary.

Several MPE methods are available, such as the Ewins-Gleeson or the Com-

plex Exponential method [23, 27]. However, when dealing with relatively noisy

and inconsistent data [15], more advanced methods such as the Least-Squares

Complex-Frequency (LSCF) [12, 13] and Least-Squares Frequency-Domain

(LSFD) [14] methods are commonly used. The governing natural frequencies

and damping ratios represent the global properties of the structure, so the same

values are expected to be estimated for each response or excitation point. When

performing a LSCF, a least-squares criterion is used to estimate the correspond-

ing complex values and the true eigenvalues are then hand-picked from the sta-

bilization diagram.

The complete dynamic information about a system, including the full series

of vibration modes, is available solely for analytical or numerical models. When

the dynamics of a structure is obtained experimentally, only a finite set of vibra-

tion modes is obtained due to the limited frequency range. The acquisition of

the dynamic response above and below certain limits is not possible. However,
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it significantly affects the FRF synthesis, and therefore an extension of Eq. (2)

with the lower AL and upper residuals AU is required:

H(ω) =

N∑
r=1

(
rA

iω − λr
+

rA
∗

iω − λ∗r

)
− AL

ω2
+ AU . (6)

The set of identified poles from the LSCF is used in the LSFD, to estimate the

values of the modal constants rA together with the lower and upper residuals AL

and AU. This is performed by minimizing the deviation between the measured

FRFs and the output of Eq. (6) for every component of the response model

separately.

3. Modal-parameter estimation on multiple related response models

Whenever a selected reference point is located in the proximity of a node,

for at least one of the mode shapes of interest, a reliable estimation of the cor-

responding modal parameters is difficult. A unique definition of the permissible

proximity of a node is difficult to define, as it is influenced by several factors,

such as the noise level, the damping ratio and the intensity of the excitation.

The appropriateness of a chosen reference point is usually verified by the quality

of a driving-point measurement. However, when analysing complex real struc-

tures with a high modal density, the proper selection of a single reference point

can prove to be challenging or even impossible [1].

As an example, a numerical model of a washing machine’s side panel is

presented in Figure 3, exhibiting the node-proximity problems. The boundary

conditions on the model simulate the fastening with four screws at the panel

corners. The selected impact and sensor location is given in Figure 3a. In the

frequency range up to 120 Hz, the amplitude spectra of the translational FRF

(Figure 3b) exhibits a low response at the 3rd (75 Hz) and the 6th (105 Hz)

mode, implying the node’s proximity to the selected reference point. This can

be confirmed by examining the mode shapes in Figure 3c. However, we can

observe that at least one of the rotational responses provides a reliable high

amplitude reading.
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Therefore, instead of changing the position of a reference point, the type of

excitation or response can be changed when measuring the row or the column

of a full response model, respectively. Since the nodes of different types of mode

shapes typically do not coincide, such a technique might prove to be a preferable

solution in order to avoid the node-proximity problems.

x y
z

Sensor
location

Impact
location

(a)

40 60 80 100 120

f [Hz]

10−7

10−5

10−3

10−1
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|[m
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]
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10−5
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10−1
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|[r

a
d
/
N

]

Translation - z Rotation - x Rotation - y

(b)

Nat. freq.: 75 Hz Nat. freq.: 105 Hz

x y
z

x y
z

(c)

Figure 3: Numerical model of a washing machine’s side panel: (a) Numerical model; (b)

Translational and rotational FRFs for the given impact and sensor location; (c) Mode shapes

at 3rd and 6th natural frequency.
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The following proposed methodology is limited to the case where the re-

sponse model of a structure is obtained as a single row, which is common prac-

tice in the field of impact-excitation-based EMA [1]. However, the same concept

can be applied with single-column measurements when using different types of

excitation. Having the j-th point denoted as the reference point, the corre-

sponding matrix of the modal constants for the r-th vibration mode (Eq. (5))

can be formulated as a single row:

rĀ
ncom =

(
φrjr rΦe

)T
(7)

In the proximity of a node for the r-th response-related vibration mode, the

corresponding eigenvector element φrjr approaches a value of zero. As a result,

a complete row of estimated modal constants (MCs) consists of low numerical

values, which leads to difficulties with a reliable MPE.

The proposed methodology is generally applicable. However, in order to

provide a clear representation, a further analysis on bending vibration modes

is presented, using a combination of translational and rotational response mea-

surements. In addition, such a reference point is selected so that difficulties

associated with the proximity of the node are alternately reflected in the trans-

lational and rotational mode shapes.

The proposed novel procedure for a modal-parameter estimation consists

of six main steps, which are presented in Figure 4. In the proposed procedure,

LSCF [12, 13]/LSFD [14] methods are used for primary identification. However,

other identification methods may be used if considered more suitable in a given

case, e.g. methods [28, 29] whether closely spaced modes are considered.

� STEP 1: Measurement

Multiple related single-row response models are obtained at a selected

reference point, using different types of sensors. Here, the used set of

sensors is presumed to follow the assumption of non-coincidental node

locations at the corresponding response-related mode shapes.
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STEP 1: Measurement

STEP 3: Pole mixing

STEP 5: Hybrid identification of 
modal constants (hybrid LSFD)

STEP 4: Identification of modal 
constants (LSFD)

STEP 6: FRF reconstruction

STEP 2: Pole identification 
(LSCF)

hybrid
row of MC

master
row of MC

slave
row of MC

sensor type 2

sensor type 1
H (ω)(1)

H(1)

H(2)
H (ω)(2)

?

?

?

?

Selected master poles

+

Figure 4: Proposed procedure for modal parameter estimation on multiple response models.

� STEP 2: Pole identification

For each individual response model, an LSCF identification of the complex-

eigenvalues (also called poles) is performed. Poorly detectable resonance

peaks (slave peaks) occur at resonances for which the response-related

mode shapes reflect the node’s proximity to the selected reference point.
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The identification of the corresponding poles (slave poles) is therefore

greatly affected by noise and other measurement uncertainties, leading to

inconsistent estimates or even the absence of any pole stabilization.

In cases, when the same resonant peaks are easily detectable with different

sensors, the proposed method does not presuppose any special procedure.

It is advisable to use the results obtained with the sensor having superior

metrological specifications, which is typically the translational accelerom-

eter.

� STEP 3: Pole mixing

However, having additional response models with non-coincidental mode-

shape nodes, adequately detectable resonance peaks (master peaks) are

available for all the vibration modes. Therefore, a set of reliable poles

(master poles) can be formed by combining the poles from different

sensors.

� STEP 4: Identification of modal constants

The selected set of master poles is applied to the standard LSFD method,

in order to estimate the unknown modal constants for all the vibra-

tion modes, including the lower and upper residuals for each response

model. With such an approach, the estimation of relevant slave-peak-

related modal constants is possible; however, a significant effect of mea-

surement uncertainties can also be observed [7].

� STEP 5: Hybrid identification of modal constants

When multiple response models are available, the identification of slave-

peak-related modal constants (slave rows of MCs) can be improved by

considering the relationship with the master-peak-related modal constants

(master rows of MCs) from another sensor with the use of the proposed

hybrid LSFD method.

In compliance with Eq. (7), two distinct, single-row response models, ob-

tained using the selected sensors are proportional. Therefore, the relation

13



between a master and a slave row of the modal constants at the r-th

vibration mode, acquired by two distinct sensors, can be formulated as:

rĀ
s

rĀm
= rp , (8)

where the master and slave indices are labelled as m and s, respectively,

and rp is the corresponding (unknown) complex scaling factor. A matrix

system of equations for the LSFD method can be formulated as:

Hexp = P A , (9)

where Hexp represents a matrix of the experimental FRFs, P is a ma-

trix containing pole-dependent denominators and A is a global matrix of

unknowns. The standard LSFD method is based on a local optimization

process, performed in compliance with Eq. (6). Each of the columns in

matrix A, composed of modal constants and the corresponding lower and

upper residuals, is obtained separately for an individual FRF. The individ-

ual rows in the matrix of the unknown modal constants are thus arranged

in a sequence of vibration modes. Whenever the row in a particular sensor

is related to the more reliable resonant peak it is denoted as a master row,

whereas the row at the same mode is denoted as a slave row for the other

sensor.

In the case of a hybrid LSFD, for each individual sensor the slave rows

of the uncorrelated unknowns in matrix A can be replaced (Figure 5).

The replaced row can be obtained using Eq. (8) by scaling the related

master row of MCs from another sensor. The resulting r-th hybrid row

is therefore proportional to the r-th master row of MCs, whereby in the

least-squares procedure the proportionality factor rp is obtained. With

such a modification, a global optimization is implemented instead of a

local one, which reduces the influence of the inconsistencies between the

individual FRFs.

In addition, a mass normalization can be performed to obtain the modal

shapes. It should be noted, however, that this process is relatively simple,
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Figure 5: LSFD method: (a) Standard; (b) Hybrid.

if at least one complementary response-excitation pair is used (see [24]

and Eq. (5)) whereas a more complex experimental approach is required

if only non-complementary response-excitation pairs are available [11].

� STEP 6: FRF reconstruction

Finally, a reconstruction of the FRFs for all the response models can be

performed according to Eq. (6). Here, the set of selected master poles and

estimated constants acquired by the hybrid LSFD are applied.

4. Experimental study

An experimental study was performed on a solid aluminium beam with di-

mensions of 15× 40× 1000 mm3, as shown in Figure 6. Approximately free-free

boundary conditions were provided by the polyurethane-foam support blocks.

An automated modal hammer with a brass tip was used to excite the structure

at 51 equidistant points. The response of the beam was measured using a Dytran

3097A1 uniaxial translational accelerometer and a Kistler 8840 rotational ac-

celerometer. Sensors were mounted at the centroid of the upper and lower beam

surfaces, alternately providing low response measurements due to the proximity

of the wave-nodes over the whole range of bending vibration modes.
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Figure 6: Experimental setup: (a) Schematic depiction; (b) Photograph.

4.1. Rotational sensor

A Kistler 8840 direct piezoelectric rotational accelerometer (Figure 7) was

used to measure the angular motion of the beam. The sensor design is based on

two spatially separated, quartz, shear-mode element assemblies [30], optimized

for a low cross-axis sensitivity and base strain effects.

Figure 7: Rotational accelerometer [30].

4.2. Automated modal hammer

One of the key preconditions for an appropriate MPE is to ensure a proper

structure excitation. Typically, hand-guided modal hammers are used, whereby

the impact intensity, direction and position vary with every hit, thus increasing

the bias and lowering the coherence of the measured FRFs. In order to avoid
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such problems, an automated modal hammer AMImpact [31], shown in Figure 8,

was used. Combined with a rigid support structure, it enabled a highly repetitive

excitation at a precise position on the structure under study.

Figure 8: Automated modal hammer.

4.3. Step 1: Measurement

Translational and rotational accelerances at each of the 51 points on the

beam were acquired from ten individual impact-response measurements. The

amplitude spectra of the accelerances at points 0 and 25 are shown in Figure 9.

The response was analysed in the range from 25 to 2000 Hz, the lower limit

being set by the foam block’s natural frequency and the upper limit being set

by the calibration range of the rotational accelerometer.

A total of seven natural frequencies can be identified from the FRFs shown in

Figure 9a. The reference point in the given example is placed approximately in

the middle of the beam. This location (given the free-free boundary conditions)

in terms of the translations for odd eigenfrequencies represents the position of

anti-nodes, where the response exhibits extreme amplitudes. On the contrary,

for even eigenfrequencies the reference point is placed in the proximity of the

nodes.

From the translational FRFs, therefore it is possible to clearly identify the

natural frequencies that correspond to the odd vibration modes, while the nat-

ural frequencies that correspond to the even vibration modes are not so clearly

visible. A vice-versa situation can be observed for the rotational sensor, with

odd natural frequencies even more difficult to detect, since the noise level of the

rotational sensor is relatively high, compared to the translational accelerometer.

The driving-point measurement is shown in Figure 9b. Since the even modes are
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Figure 9: Measured FRFs: (a) Point 0; (b) Driving point.

not excited during the driving-point measurement, the natural frequencies cor-

responding to the even modes are not visible in the case of either translational

or rotational FRFs.

4.4. Steps 2 and 3: Pole identification and pole mixing

The separate identification of complex eigenvalues was performed on a set

of translational and rotational FRFs using the LSCF. The corresponding stabi-

lization diagrams are shown in Figure 10, with the stable poles being indicated

by green-cross markers.

18



stable pole

102

101

100

60

250 500 750

mode 1 mode 3 mode 5 mode 7
Selected master poles

1000 1250 1500 1750 2000
0

20

40

f [Hz]

2
|∑

H
| [

m
/N

s]
t

Po
ly

no
m

ia
l o

rd
er

 [/
]

(a)

mode 2 mode 4 mode 6
Selected master poles

250 500 750 1000 1250 1500 1750 2000

102

101

100

2
|∑

H
| [

ra
d/

N
s]

r

f [Hz]

60

0

20

40

Po
ly

no
m

ia
l o

rd
er

 [/
]

(b)

Figure 10: Stabilization diagram: (a) Translation; (b) Rotation.

As is apparent from Figure 10a, stabilization is achieved at both the master

and slave translational resonance peaks; therefore, all the natural frequencies

and the corresponding damping ratios can be identified. However, this is not the

case with the rotational diagram, presented in Figure 10b, where the stabiliza-

tion can only be observed for odd vibration modes. As labeled in Figures 10a

and 10b, all the high response resonances were selected as the master peaks and

the corresponding master poles represent the basis for a further modal param-
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eter estimation.

4.5. Steps 4 and 5: Standard and hybrid identification of modal constants

The pre-calculated set of master poles was adopted within the estimation of

the modal constants and the standard LSFD method used for both the transla-

tional and rotational sets of FRFs separately.

Within the hybrid LFSD method, when considering translational measure-

ments, the hybrid approach was applied to estimate even (slave) rows of the

matrix A (see Figure 5) that were not clearly detectable in the translational

FRFs. The corresponding even rotational rows of the MCs, which were clearly

observable from the rotational FRFs, served as the master rows. A comparison

of the identified modal constants2 obtained using the standard and the hybrid

LSFD is shown in Figure 11.

In addition to the translation-slave and the hybrid modal constants, the ro-

tational master modal constants are also presented. They are included to repre-

sent the shape of the modal constants that is imposed on the translation-slave

modal constants in the hybrid estimation. It is shown that inconsistent modal

constants can be obtained for slave rows when the standard LSFD is considered.

This is most obvious for the second vibration mode. Nevertheless, a fairly good

match can be observed for the fourth and sixth vibration modes. In addition

to the graphical comparison, the Modal Assurance Criterion (MAC) [32] is cal-

culated with regards to the analytical mode shape prediction for a homogenous

free-free supported beam [33]. The results are presented in Table 1, showing

a significant improvement in the hybrid procedure, compared to the standard

approach.

2Relative phase shifts between individual points for the structure under consideration turn

out to be either close to 0◦ or 180◦, therefore stationary depiction of complex vectors is used.
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Figure 11: Estimated modal constants for even natural frequencies.

Table 1: Even modes: MAC values - compared to the analytical prediction.

Mode 2 Mode 4 Mode 6

MAC

(Slave, Analytical)
0.76 0.87 0.89

MAC

(Hybrid, Analytical)
0.99 0.98 1.00

However, when the mass-normalized mode shapes are considered3, a more

3It should be noted that also the relationship between the accelerance and the receptance

is to be considered, in order to obtain mass-normalized mode shapes.
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significant difference between the standard and the hybrid LSFD methods can

be observed. The reference mode shape was obtained by placing the refer-

ence point 40 mm from the centroid of the beam to avoid any problems with

node proximity. As an example, translational and hybrid variation of mass-

normalized mode shapes for the second and fourth vibration mode are given, as

shown in Figure 12. In both cases, normalization was performed by considering

the corresponding driving point values of estimated modal constants.
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Figure 12: Normalized modal shapes: (a) Mode 2; (b) Mode 4.

The reason for discrepancies in normalization can be attributed to the influ-

ence of the estimated driving-point values. Since the driving-point for the even

translational mode shapes is located near the nodes, close-to-zero values are

expected. Therefore, even a small inconsistency in the evaluation of the modal

constants can have a significant impact on the scaling of the mass-normalized

mode shapes. When using the hybrid LSFD, the estimated driving-point value

appears to be more accurate since the contribution of the rotational mode shape
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to the modal constant value is not subjected to the node-proximity problem.

This results in a more accurate normalization, which can be confirmed by the

reference mass-normalized mode shape.

In the case of rotational measurements, the hybrid approach was applied to

deduce the odd (slave) rows of matrix A. The advantage of the used rotational

sensor, compared to the translational one, is in the insensitivity to the offset from

the centroid axis as there is also a lower base-strain and cross-axis sensitivity

due to the unique placement of the piezo-crystals. On the other hand, its high

noise level leads to several problems, starting with the inability to make a low-

response pole identification. Without taking into account the poles from the

translational measurement in Step 3, the identification of the modal constants

would not even be possible. However, even by using the set of master poles

in correlation with the standard LSFD, a significant effect of the noise can be

observed from the identified modal constants as shown in Figure 13.

M
o
d

e
1

Z
o
o
m

Translation - Master Rotation - Slave Hybrid

M
o
d

e
3

Z
o
om

M
o
d

e
5

Z
o
om

0 25 50

Point [/]

M
o
d

e
7

0 25 50

Point [/]

Z
o
om

Figure 13: Estimated modal constants for odd natural frequencies.
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The hybrid LSFD estimates of the odd (slave) vibration-mode-related modal

constants; however, show a significant improvement in the consistency, which is

also evident from the quantitative comparison in Table 2.

Table 2: Odd modes: MAC values - compared to the analytical prediction.

Mode 1 Mode 3 Mode 5 Mode 7

MAC

(Slave, Analytical)
0.83 0.26 0.16 0.42

MAC

(Hybrid, Analytical)
1.00 0.99 0.96 0.99

4.6. Step 6: FRF reconstruction

In the following section, standard and hybrid type of reconstructed FRFs

at points 0 in 25 are compared to the actual measurement carried out at these

points. In addition to the graphical representation, a coherence criterion [34] is

also used for quantitative comparison. Since the hybrid LSFD differs from the

standard LSFD only in the evaluation of slave-peak-related modal constants, no

discrepancies in the master peak amplitudes are expected.

Accordingly, the quantitative comparison parameter (QCP) is calculated as

the average measurement-reconstruction coherence criterion [34] value in the

±10 Hz bandwidth around the slave-peak-related natural frequencies.

A comparison of the FRFs for the translational and rotational response at

Point 0 is presented in Figure 14 and the corresponding values of the QCP values

are given in Table 3.
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Figure 14: FRF reconstruction - Point 0: (a) Translation; (b) Rotation.

Table 3: QCP based on measurement-reconstruction coherence criterion at Point 0.

Standard LSFD Hybrid LSFD

QCP

Translation - Even natural frequencies
94.4% 94.1%

QCP

Rotation - Odd natural frequencies
73.5% 72.0%
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Compared to the hybrid LSFD reconstructions, a slightly better agreement

between the measurement and the standard LSFD reconstruction can be ob-

served for both, translational and rotational response. This is expected due to

the local nature of the modal parameter estimation that is performed on es-

sentially uncorrelated degrees of freedom (DoFs). The hybrid LSFD, however,

introduces a correlation between the DoFs imposed by the corresponding mode

shape (obtained by a different sensor) that has no node-proximity problems.

Therefore, the hybrid LSFD reconstruction at the expense of a minimal re-

duction in the coherence towards measurement, represents physically consistent

information with regards to the remaining set of FRFs even in the slave-peak

related frequency bandwidth.

The driving-point comparison of FRFs is presented in Figure 15 and the cor-

responding values of the QCP values are given in Table 4. As already observed,

the identified amplitudes of the translational modal constants (Figure 15a), ob-

tained by the standard LSFD, appear to have inaccurate (too high) values at

low response peaks. This leads to spurious peaks in the reconstructed FRF at

the corresponding natural frequencies. However, this is not the case with the

reconstruction obtained by the hybrid LSFD, where rotational data is used as

a basis for the modal constants identification. The QCP value for both recon-

structions is practically identical.

When examining the measured rotational FRF for the driving point in Fig-

ure 15b, practically all the identified resonance peaks are located below the

noise floor. The pre-calculated set of mixed poles can still be adopted and the

standard/hybrid LSFD least-squares procedure is performed. However, in the

standard approach the modal constants for all the modes are identified with

respect to the rotational measurements. Within the hybrid approach, the only

change occurs at odd natural frequencies, where the proportionality to the trans-

lational row of modal constants is imposed before performing the least-squares

procedure. In this case, both the standard and the hybrid FRF reconstruction

give practically the same results, which is apparent from both, the graphical

and quantitative comparisons in Figure 15 and Table 4, respectively.
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Figure 15: FRF reconstruction - Driving point: (a) Translation; (b) Rotation.

Table 4: QCP based on measurement-reconstruction coherence criterion at Point 25.

Standard LSFD Hybrid LSFD

QCP

Translation - Even natural frequencies
96.7% 96.6%

QCP

Rotation - Odd natural frequencies
62.3% 62.5%
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5. Conclusions

In this paper a new approach to modal identification in the case of the near-

to-node experimental response model is presented. First, a reliable complex

eigenvalue identification is ensured, using a combination of master-peak-related

data. Next, a hybrid LSFD method is proposed in order to improve the con-

sistency of the estimated modal constants, also effecting the modal-shape nor-

malization and the FRF reconstruction. Finally, an experimental study demon-

strates the efficiency and accuracy of the proposed approach. The use of related

experimental response models appears to be a convenient alternative to the es-

tablished multi-reference approach, whereas the use of the hybrid LSFD method

appears to be a useful tool to improve the evaluation of modal constants.

Compared to the modal parameters that can be identified by separate a

analysis of the acquired (different) response models, with the proposed hybrid

approach a FRF reconstruction of unidentifiable resonance peaks is enabled.

Moreover, a methodology is introduced, to increase the consistency of the unre-

liable estimates. Provided that one of the used response-excitation pairs exhibits

complementary properties, the mass normalization of the mode shapes is also

possible.

The study in this paper is limited to the use of different response models

when a single-row response model is obtained at a reference measurement point.

However, the same concept can be applied with the use of different types of exci-

tation in the case of column-based measurements and even with the established

multi-reference measurements, to rectify the estimated modal constants and the

reconstructed FRFs.

When performing experimental modal analysis on real structures, various

problems can arise, requiring to use case-specific methods in order to be man-

aged. Therefore, some different or even additional steps to the presented pro-

cedure may be required to provide successful modal identification, however the

basic approach of using multiple related response models remains the same.
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experimental strain-based modal analysis methods, in: Proceedings of the

International Conference on Noise and Vibration Engineering (ISMA), Leu-

ven, Belgium, 2014.

[11] T. Kranjc, J. Slavič, M. Boltežar, The mass normalization of the displace-

ment and strain mode shapes in a strain experimental modal analysis using

the mass-change strategy, Journal of Sound and Vibration 332 (26) (2013)

6968–6981.

[12] P. Guillaume, P. Verboven, S. Vanlanduit, Frequency-domain maximum

likelihood identification of modal parameters with confidence intervals,

in: Proceedings of the international seminar on modal analysis, Vol. 1,

Katholieke Universiteit Leuven, 1998, pp. 359–366.

[13] P. Guillaume, L. Hermans, H. Van der Auweraer, Maximum likelihood

identification of modal parameters from operational data, in: Proceedings

of the 17th International Modal Analysis Conference (IMAC17), 1999, pp.

1887–1893.

[14] H. Van Der Auweraer, W. Leurs, P. Mas, L. Hermans, Modal parameter

estimation from inconsistent data sets, in: Proceedings of SPIE-The Inter-

national Society for Optical Engineering, Vol. 4062, 2000.

[15] B. Peeters, H. Van der Auweraer, P. Guillaume, J. Leuridan, The polymax

30



frequency-domain method: a new standard for modal parameter estima-

tion?, Shock and Vibration 11 (3, 4) (2004) 395–409.

[16] X.-J. Yao, T. H. Yi, C. Qu, H. N. Li, Blind modal identification in fre-

quency domain using independent component analysis for high damping

structures with classical damping, Computer-Aided Civil and Infrastruc-

ture Engineering 33 (1) (2018).

[17] X.-J. Yao, T. H. Yi, C. Qu, H. N. Li, Blind modal identification us-

ing limited sensors through modified sparse component analysis by time-

frequency method, Computer-Aided Civil and Infrastructure Engineering

33 (9) (2018).

[18] T.-H. Yi, X.-J. Yao, C.-X. Qu, H.-N. Li, Clustering number determina-

tion for sparse component analysis during output-only modal identification,

Journal of Engineering Mechanics 145 (1) (2019).

[19] D. Kientzy, M. Richardson, K. Blakely, Using finite element data to set up

modal tests, Sound and Vibration Magazine 23 (6) (1989) 16–23.

[20] D. C. Kammer, Sensor placement for on-orbit modal identification and

correlation of large space structures, Journal of Guidance, Control, and

Dynamics 14 (2) (1991) 251–259.

[21] C. Papadimitriou, Optimal sensor placement methodology for parametric

identification of structural systems, Journal of sound and vibration 278 (4-

5) (2004) 923–947.

[22] C. Stephan, Sensor placement for modal identification, Mechanical Systems

and Signal Processing 27 (2012) 461–470.

[23] N. M. M. Maia, J. M. M. e Silva, Theoretical and experimental modal

analysis, Research Studies Press, 1997.

[24] R. Lin, J. Zhu, On the relationship between viscous and hysteretic damping

models and the importance of correct interpretation for system identifica-

tion, Journal of Sound and Vibration 325 (1-2) (2009) 14–33.

31
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