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Abstract

Structures with complex geometries often exhibit elaborate spatial responses to a dynamic ex-
citation. Traditional point-wise vibration measurement techniques, such as accelerometer mea-
surements, provide reliable results usually lacking spatial resolution. In contrast, image-based
displacement identification methods provide full-field non-contact measurement capabilities at the
cost of a lower dynamic range. Furthermore, 3D digital image correlation is able to reconstruct
the geometry and spatial displacements of structures, but require multi-camera setups to work. In
the case of omnidirectional experimental modal analysis, frequency-domain stitching is required.

This research builds on the recently introduced, multi-view, frequency-domain-triangulation
method, that provides a framework for the extraction of full-field 3D operating deflection shapes
with a high dynamic range. The existing method is based on sequential high-speed recordings of
the vibrating structure made from different views; however, to work it requires prior knowledge of
the structure’s geometry.

In this research, following an initial camera calibration, a 3D surface mesh is extracted us-
ing a photogrammetric geometry reconstruction approach. Displacements of the vibrating object
are then recorded and extracted from a large number of views and full-field 3D operating deflec-
tion shapes are extracted using frequency-domain triangulation. In the final step, the deflection
shapes are magnified and mapped to the reconstructed 3D surface mesh to visualize the vibra-
tional behavior of the test subject. The results of the introduced method for the extraction and
visualization of full-field 3D deflection shapes do not require any prior knowledge regarding the
geometric or dynamic properties of the studied object. The considerable over-determination in the
frequency domain of measurement data obtained from the large number of viewpoints leads to a
larger dynamic range and a better reconstruction.

Keywords: experimental modal analysis; high-speed camera; full-field; omnidirectional; modal
magnification.

1. Introduction

To visualize a structure’s full-field 3D deflection shapes without prior knowledge of its geometry
or dynamic properties, three steps must be taken. Firstly, a 3D model of the structure’s geometry
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needs to be reconstructed. Secondly, its vibrational behavior needs to be studied and thirdly, a
visualization of the results must be performed. A short overview of the existing research in the
fields of 3D geometry reconstruction, image-based displacement identification and the visualization
of magnified deflections is provided in the following section.

The 3D reconstruction of existing objects is a broad area of research and numerous approaches
exist. Roughly, they can be classified into contact and non-contact approaches [1, 2|, based on
the nature of the initial data acquisition. Here, we focus on the non-contact methods, which can
be further split into active-vision methods and passive-vision methods. Active methods require
some form of structured light to be projected onto the object to extract the geometry information
and include methods such as laser scanning [3], structured light scanning [4] and time-of-flight
techniques [5], among others. Rinaldi et al. identified the tension in the cables of a cable-stayed
footbridge based on the results of a laser-scanning approach [6] The traditional passive-vision-based
method of 3D geometry reconstruction involves 2 steps: camera-pose and sparse-scene reconstruc-
tion, using Structure-from-motion (SfM) [7] and dense-scene reconstruction, using the Multi-View
Stereo (MVS) approach [8, 9]. Traditional SfM methods perform scene optimization by means
of the Bundle Adjustment (BA) algorithm [10], either by considering all the images at once in a
global approach [11, 12, 13] or incrementally adding images to an initially reconstructed image pair
[14, 15, 16]. On the other hand, MVS algorithms can be roughly classified based on their under-
lying object models into volumetric [17], mesh-based [18], depth-map-based [19] and point-based
[9] approaches. Recently, deep-learning-based approaches to both SfM [20, 21, 22] and MVS [23]
methods have been widely researched.

Image-based displacement-identification approaches are becoming a viable alternative to tradi-
tional methods in the field of structural dynamics [24, 25, 26]. Point tracking [27, 28, 29, 30], (3D)
DIC [31, 32, 33, 34, 35, 36, 37|, gradient-based optical flow (OF) methods [38, 39, 40, 41, 42] and
phase-based OF motion extraction [43, 44, 45, 46, 47] have all been successfully applied. Single-
camera 3D DIC approaches have also been extensively studied with the objective of reducing the
high initial hardware investment and removing the difficult synchronization of the stereo camera
pair of the conventional 3D DIC approach [48]. Three main approaches to single-camera 3D DIC
exist; mirror-based [49, 50], prism-based [51, 52] and diffraction-grating-based [53] methods. Yu
et al. demonstrated the applicability of the single-camera 3D DIC approach to vibration measure-
ments by extracting the modal parameters of a cantilever plate [54]. Among the listed methods,
3D DIC is the most widely used and has been shown to produce results that are comparable to the
laser Doppler vibrometer approach [55, 56]. The extraction of of high-frequency vibration informa-
tion from low-frame-rate recordings is also possible through the use of under-sampling approaches
[57, 58, 59, 55]. Rinaldi et al. performed operational modal analysis based on high-speed camera
recordings of a small-scale frame structure and demonstrated the advantages of image-based meth-
ods in a damage-detection application [60]. Patil et al. proposed a dynamic stitching approach to
address the field-of-view limitation of classic 3D DIC [61]. Gorjup et al. proposed a frequency-
domain-triangulation (FDT') method to extract the full-field operating deflection shapes based on
sequential recordings from a single high-speed camera [62]. The accuracy of the displacement mea-
surements increases significantly when more than two views are used in the triangulation [63], and
consequently, a very large dynamic range can be achieved with the FDT approach. Recently, Bal-
dini et al. employed the FDT approach as a basis for the reconstruction of the vibration-induced
acoustic radiation field [64].

As the frequency of the vibration increases, the amplitudes of the observed structure displace-
ments typically decrease [39]. In the field of structural dynamics, the displacements are commonly
invisible to the naked eye and covered beneath the noise floor of the camera’s sensitivity. Mo-



tion magnification was introduced in 2005 by Liu et al. as a technique for the extraction and
visualization of otherwise invisible motion from video data [65]. Since then, the area has seen
extensive research and numerous methods have been developed. Motion-magnification methods
can be classified into Lagrangian methods [65] that are based on explicit optical flow computation,
and Eulerian methods [66], based on a spatio-temporal decomposition of video data. A special
subset of the latter group are the phase-based motion-magnification (PBMM) methods [67, 68],
which are currently the most popular among all the motion-magnification approaches. PBMM
methods have also been applied to the field of structural dynamics [69, 70]. Recently, Feng et al.
[71] extended the Eulerian motion-magnification approach to three dimensions using the Neural
Radiance Fields (NeRF) deep-learning method [72]. As an alternative to motion magnification-
methods, Cufar et al. proposed a modal-analysis-based approach to extract and visualize motion
covered under the noise floor of image-based displacement measurements [73]. A recent overview
of motion-magnification methods and their application to vibration measurements can be found
in [74].

Existing methods for the extraction of full-field spatial vibration information are limited in their
field-of-view and are sensitive to image noise. Additionally, they are computationally intensive and
often require some prior knowledge regarding the geometry of the test object. A methodology for
the extraction and visualization of full-field 3D operating deflection shapes is presented in this
manuscript. Firstly, the need for a priori knowledge of the structure’s geometry is addressed
through the use of a photogrammetric 3D geometry reconstruction approach. Secondly, displace-
ments are identified from a large number of viewpoints, causing considerable over-determination
of the triangulation problem and consequently reducing the effect of image noise. Finally, the nu-
merically efficient frequency domain triangulation method is employed to extract omnidirectional
vibration information.

The rest of the study is structured as follows. A short overview of the method’s theoretical
background is given in Sec. 2. The high-speed camera full-field 3D modal magnification method
is presented in Sec. 3. The method is validated by means of two experimental cases in Sec. 4 and,
finally, the conclusions are drawn in Sec. 5.

2. Theoretical background

This section presents the key theoretical concepts behind the established methods on which
the proposed full-field 3D modal magnification method is based. The calibration of the multi-view
imaging system provides the basis for the rest of the method and is discussed first in Sec. 2.1.
Secondly, the principles of the Structure-from-Motion and Multi View Stereo photogrammetric
reconstruction approaches, used to obtain a dense 3D surface representation of the test subject,
are introduced in Sec. 2.2. The 2D DIC approach used to extract image-based displacement
information is presented in Sec. 2.3. Finally, in Sec. 2.4, the theoretical background is given for
the frequency-domain-triangulation method, used to reconstruct the 3D deflection shapes of the
test object.

2.1. Calibration of the imaging system

A calibrated imaging system is required to perform the proposed full-field 3D modal magnifica-
tion method. The projective transformation of 3D object points to their 2D image representations
is governed by the projective matrix P, commonly referred to as the camera matrix [75]. It can
be expanded into:

P = K[R|t] (1)



The camera matrix in Eq. (1) consists of the intrinsic and extrinsic camera parameters. The
latter are presented by the rotation matrix R and the translation vector ¢ that define the trans-
formation from the world coordinate system to the camera coordinate system (Fig. 1a)). More
precisely, the extrinsic parameters present the position and orientation of the camera in the world
coordinate system, commonly referred to as the camera pose. The intrinsic parameters, repre-
sented by the camera calibration matrix K, characterize the optical properties of the camera, such
as its focal length and principal point. The distortion of the lens was not taken into account in this
research, as the high-quality lenses with large focal lengths were used for the data acquisition [75].
The camera calibration matrix defines the projection of 3D points from the camera coordinate
system onto the 2D image plane (Fig. 1a)) [75].

If the optical system remains constant for the duration of the experiment, the intrinsic camera
parameters need to be calibrated only once. Commonly, a set of images of a chessboard pattern
is taken and the locations of the pattern’s corners are identified on each image. The camera
calibration matrix is then reconstructed based on the relation between the known locations of the
corners in the world coordinate system and their 2D image projections [76, 77].

The extrinsic parameters need to be reconstructed each time the relative positions of the camera
and the observed scene are changed. The extrinsic camera parameters are reconstructed by solving
the Perspective-n-Point (PnP) problem [78], based on the known locations of n points in the world
coordinate system and their 2D image representations. If the geometry of the scene is unknown,
a planar pattern of ArUco markers can be used [79]. In this case, the extrinsic camera parameters
are reconstructed in the reference coordinate system, determined by the ArUco board.

Since the definition of the world coordinate system is arbitrary, it is often aligned with the
reference coordinate system of the ArUco board to perform the calibration of the camera pose
[R|t] (Fig. 1b)). Alternatively, if the world coordinate system is defined independently, the
transformation between it and the ArUco reference frame [R|t], must be considered to determine
the coordinates of the markers. In this case, solving the PnP problem yields in the camera pose
directly in the world coordinate system [R|t]  (Fig. 1b)).
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Figure 1: a) Projection of a 3D object point P onto its 2D image representation p, b) ArUco board camera
calibration



2.2. Photogrammetric Geometry Reconstruction

In this research, the 3D geometry of the test object was reconstructed using a photogrammetric
approach. The employed photogrammetric pipeline consists of a Structure-from-Motion stage for
a camera-pose estimation and sparse-scene reconstruction, followed by a Multi-View Stereo stage
for dense-scene reconstruction. The essential theoretical background to the approach is described
in this section.

Structure-from-Motion.

Overlapping images of the object from multiple viewpoints are input along with the camera’s
intrinsic parameters to initialize the reconstruction. In the first step of the pipeline, feature points
need to be identified on every image. Fach image is then decomposed into a difference-of-Gaussian
pyramid and feature points can then be identified as extrema of the function [80]. Image-intensity
gradient orientations in the neighborhood of each feature point are considered to form the Domain-
Size Pooling Scale Invariant Feature Transform (DSP-SIFT) feature descriptor [81], employed in
the present research. The resulting descriptor is invariant to the feature scale and changes in the
feature orientation and illumination.

The feature matching between pairs of images is performed next [82]. For each feature descrip-
tor in the first image of the pair, the closest match is found in the second image. As an exhaustive
comparison of all the descriptors would be prohibitively computationally expensive, an approxi-
mate nearest-neighbor search is performed based on a KD-tree approach. Repetitive matches are
discarded during this step, as a given feature in the first image should also be represented by a sin-
gle match in the second figure. In the final step of the feature matching, the identified candidates
are validated using RANSAC [78].

In the final step of SfM, the camera’s extrinsic parameters for each image are reconstructed.
Once the feature points have been extracted and matched between the pairs of images, these
matches are extended across multiple images to form so-called feature tracks. Each feature track
represents a single 3D scene point, as observed from multiple viewpoints. The relation between
these estimated 3D points and their 2D image projections is used to solve the Perspective-n-point
(PnP) problem [78] and estimate the extrinsic camera parameters for each image. An incremental
approach to SfM is employed, where the solution is first obtained for an initial image pair and then
incrementally expanded with the other images of the image set [82]. Finally, Bundle Adjustment
[10] is performed to optimize both the intrinsic and extrinsic parameters of all the views as well
as the locations of the reconstructed 3D scene points. The estimated 3D points used in the
PnP problem can be combined into a single point cloud, providing a sparse reconstruction of the
observed scene.

Multi-View Stereo.
To achieve a dense reconstruction of the observed scene, depth maps must be estimated. For
a reference image, n neighboring images are selected, based on the corresponding camera poses,
reconstructed during SfM [82]. The Zero-mean normalized cross-correlation (ZNCC) is computed
over a local window, centered on a given pixel and used as a cost function for possible depth values.
Then, in a Semi-Global Matching approach [83], the cost is aggregated along several directions
across the image to enforce the spatial smoothness. Next, the depth values are identified based
on the aggregated cost and a low-resolution depth map is produced. In the final step, the initial
depth map is refined to achieve sub-pixel accuracy [82].

In the final step, a 3D surface mesh is obtained. The reconstructed depth maps are merged and
a dense point cloud is extracted. Close points are merged to reduce the complexity of the point



cloud [82]. A 3D Delaunay triangulation is then applied to fill the volume of the point cloud, after
which the 3D surface mesh can be extracted. Finally, the surface mesh is filtered and smoothed
[82].

2.3. Image-based displacement identification

In this study, a 2D DIC approach is used to extract the rigid translations of the small subsets
of pixels {Az, Ay}" [84]. As the expected displacements are small, the subset deformation and
rotation are expected to be negligible [39]. Constraining the motion estimation to translation only
is therefore sensible and additionally leads to a significant reduction in the computational time. The
difference between a region of interest in the reference image f(x,y) and each consecutive image
g(x+ Az, y+ Ay) in the video stream is minimized using an iterative optimization algorithm. The
cost function is given as a sum of the squared distances [85]:

cssp(Ax, Ay) = (f(z,y) — glo + Az,y + Ay))? (2)

In the field of structural dynamics, the displacements to be extracted (Az, Ay) can be assumed
to be small, and the cost function 2 can be approximated with a first-order Taylor series expansion.
The least-squares solution to the problem can be obtained as [85]:

(b [ 3] {Eueoh) ®)

where the first-order derivatives, representing the image-intensity gradients of the displaced
image in the z and y directions, are denoted by g, and g,. The summations are performed over
all the pixels of the subset with a size of (2M + 1) x (2M + 1) pixels. The reference image f(z,y)
is interpolated with bi-variate splines so that sub-pixel displacements can be identified [84]. To
ensure successful a displacement identification, the observed surface needs to be covered with a
high-contrast pattern, such as a speckle pattern [86].

2.4. Frequency-domain triangulation

In this section the theoretical background to frequency-domain triangulation (FDT) is given.
For a more comprehensive explanation of the method, the reader is referred to the original work
by Gorjup et al. [62].

The approach is based on the assumption that the observed structure is a linear, time-invariant
system. When such a system is subjected to a stationary excitation and is, in response, exhibiting
a small harmonic oscillation, its 3D operating deflection shapes can be extracted using a single
high-speed camera. Multiple asynchronous recordings of the vibrating structure are obtained
by changing the relative positions of the high-speed camera and the structure. As the image
sequences at each view point are obtained asynchronously, the relative phase between the views
is obtained using a reference accelerometer or force-sensor measurements. The high-speed camera
recording and the reference measurement are synchronized using a trigger signal. The trigger
signal is generated by the data-acquisition system of the reference measurement and the start of
the high-speed camera recording is consequently slightly delayed.

The perspective transformation is used to map 3D object points X = {X,Y, Z, 1}T to their 2D
image representations @ = {z,y, 1} in each view. Here, the points are represented in homogeneous
coordinates, as the perspective transform is not linear in Euclidean space. The transformation is
given by [75]:

zx=PX, (4)



where z is the scaling factor and P is the camera matrix (Sec. 2.1). Before the FDT method
can be performed, the intrinsic parameters of the camera need to be calibrated using a standard
chessboard procedure [77]. Care must be taken, that the intrinsic parameters then stay constant
for the duration of the experiment. The Perspective-n-Point problem is solved for each view to
estimate the rotation matrix and the translation vector from the known locations of n of the 3D
object points and their corresponding 2D image representations [78].

After the image-based displacement has been performed for each view, the identified displace-
ment information is transformed into the frequency domain using the Fourier Transform to form
frequency-domain images of motion &(wy) [62]:

ZREF

The 2D image of the ODS is then identified as the values of the displacement-amplitude spectra
in all viewpoints at a given frequency of interest.

Next, multi-view triangulation of the obtained 2D ODS images is performed. To ensure the
correct perspective geometry scaling, the identified displacements are first translated to their refer-
ence image locations xrgr. Consequently, the triangulation in the frequency domain is performed
on images of the deflected geometry &;(wy) = {Zx, U, 1}*. For each point, two equations can be
written [62]:

(#xp] — pj) X (wi) =0

(9k0} — P}) X (wi) =0,

where p” is the r-th row of the camera matrix, 5 is the measurement point index and k is the
frequency vector index. The homogeneous system of 2n equations (n is the number of views, from

which a given point is observed) can then be solved by means of a singular value decomposition
to obtain the 3D coordinates of X (wy) [62].

(6)

3. Omnidirectional Multi-View High-speed-camera-based full-field 3D modal magni-
fication

The proposed method integrates multiple established techniques from the fields of 3D geom-
etry reconstruction, frequency-domain triangulation and 3D motion reconstruction into a single
omnidirectional full-field modal magnification method. Leveraging the numerical efficiency of the
frequency-domain-triangulation approach, each displacement measurement point can be observed
from a very large number of views (e.g., 20+ views), resulting in a level of measurement redun-
dancy not achievable with other methods. The over-determination of the displacement results in
a higher dynamic range and better reconstruction.

A schematic overview of the method’s main steps is provided in Fig. 2. In the 1% step of
the proposed methodology (Fig. 2a)), the multi-view imaging system is calibrated (Sec. 2.1). An
ArUco board with a known location in the world coordinate frame is imaged to reconstruct the pose
of the stationary camera. Multiple images of the board in different positions are taken to refine
the calibration. In this manuscript, a single high-speed camera is fixed in place and the test object
is moved in between the sequential measurements to obtain the desired results. Alternatively, the
method could also be performed using a moving camera and stationary object setup or multiple
cameras could be used to perform concurrent measurements.

In the 2" step (Fig. 2b)), the 3D surface model of the test object is reconstructed using
the photogrammetric approach, see Sec. 2.2. The test object is imaged from a large number
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Figure 2: Proposed methodology.

of viewpoints (e.g. 144, as shown in Sec. 4.1) while tracking its position in the world coordinate
system. Based on the known pose of the stationary camera and the tracked position of the object’s
coordinate system, the relative camera pose can be reconstructed for each image (analogous to [R|¢]
in Fig. 1b)). Supplementary images of the object, acquired from a wider range of viewpoints with
an uncalibrated camera, can be integrated into the image set during the Structure-from-Motion
stage (Sec. 2.2) to obtain a more accurate and complete reconstruction.

In the 3'¢ step (Fig. 2c)), sequential high-speed recordings of the vibrating structure are
recorded from a large number of viewpoints (e.g., 24 in the test case, presented in Sec. 4.1)
by repositioning the object between recordings. The 3D surface mesh, reconstructed in the 274
step (Fig. 2b)), is then reprojected onto the high-speed recordings to determine the displacement
measurement locations (Fig. 2c)). Subsequently, the in-plane displacements are identified based
on each recording, as described in Sec. 2.3. The still images, required for the 3D geometry
reconstruction (step 2), could also be obtained directly from the high-speed recordings (e.g. as
the average of the recording). However, usually a much larger image set is required to obtain an
adequate reconstruction of the object’s 3D geometry.

In the 4'" step, the full-field 3D operating deflection shapes are reconstructed using the frequency-
domain-triangulation approach, as described in Sec. 2.4 (Fig. 2d)). Similarly to the hybrid-modal-
identification approach [87], the natural frequencies of the test object are identified based on the
wide-dynamic-range reference accelerometer measurements. Finally, the identified 3D ODS are
attributed to the corresponding nodes of the object’s 3D surface mesh. The mesh is then deformed
in accordance with the scaled 3D ODS to provide a full spherical visualization of the object’s
vibrations at a specific frequency of oscillation (Fig. 2e)).

The key advantages of the described approach are as follows:

1. No prior knowledge of the object’s geometric or dynamic properties is required. This extends
the frequency-domain-triangulation approach, where a 3D geometry model must be provided
[62].

2. The proposed method enables an omnidirectional full-field analysis fo the object’s vibration.
No dynamic stitching is required, as in the case of 3D DIC [61].

3. The use of a large number of views, made possible by the numerical efficiency of the frequency-
domain-triangulation method, leads to high measurement redundancy and consequently in-
creases the dynamic range of the measurements [63].



4. Experimental demonstration

The proposed full-field modal magnification method was applied to two test objects to showcase
its performance. First, an axisymmetric sheet-metal impeller cover of a vacuum-cleaner motor was
studied, followed by an experiment on a metal model airplane.

4.1. Impeller cover

An experiment using a sheet-metal impeller cover from a vacuum-cleaner motor (see Fig. 3b))
was conducted to validate the proposed method. The object was expected to exhibit linear behavior
and was placed on a soft foam pad to minimize boundary-condition-based non-linearity. The
experimental setup is schematically presented in Fig. 3.

Turntable with test object and shaker

High-speed camera

Turntable ¢

/ )y Shaker

Turntabl

Goniometer p

Figure 3: a) Experiment setup for the impeller-cover test case, b) impeller-cover test object, ¢) schematic close-up
representation of the test object, turntable and shaker, d) turntable axis orientations and the position of the world
coordinate system.

A single stationary Photron FASTCAM SA-Z high-speed camera was used to capture both
the static images, needed for image-based geometry reconstruction, and the high-speed video
sequences, on which the displacement identification was performed (Sec. 3). A Sigma 24-70-mm
zoom lens with 2.8 was attached to the camera during the experiment. The camera was positioned
at a distance of roughly 0.5 m and the focal length of the lens was set at 50 mm. A motorized



and computer-controlled 2-axis turntable was used during all the stages of the experiment for
accurate and repeatable repositioning of the impeller cover in the world coordinate system. The
configuration of the turntable is shown in Fig. 3c) and d). The first stage, depicted in orange, was
used to set the pitch angle p of the test object towards the high-speed camera. Then, the second
stage of the turntable, depicted in blue, was used to rotate the test object around its own axis by
changing the angle ¢. The scene was illuminated with three powerful, flickerless LED lights. A
single NANLITE Forza 720 served as the primary light source, with two Forza 60 lights providing
illumination from the side. (Fig. 3a)).

As discussed in Sec. 3, the camera calibration was performed in the first step of the experiment.
Following the calibration of the camera’s intrinsic parameters, an ArUco board of 5 x 5 markers
was placed on the turntable to perform the calibration of the multi-view imaging system (Fig.
4a)). A total of 144 images of the board were taken by changing the p angle of the turntable from
15° to -7.5° in steps of 7.5° and the ¢ angle from 0° to 360° in steps of 10°. A mean camera pose
in the world coordinate system was calculated in the end, based on the results of all 144 images
(Fig. 4b)).

W

Figure 4: ArUco board used in the multi-view imaging system calibration procedure, b) Camera poses of the
static image set (gray and red) and the high-speed recordings (red), c) The displacement measurement locations at
p=—7.5°and ¢ = 30°.

After the calibration of the imaging system, an image-based 3D geometry reconstruction was
performed (2°¢ step). A speckle pattern was applied to the outside surface of the impeller cover to
aid both in the process of 3D geometry reconstruction and later during image-based displacement
identification. The test object was placed on the turntable and imaged from the same set of
viewpoints as the ArUco board in the previous step (one of the obtained images is shown in Fig.
5a)). It should be explained at this point, that the camera pose estimation can be solved directly
on the test object images. It is however our experience, that a more accurate and robust solution
may be obtained by first performing the pose estimation on ArUco board images. A 3D surface
mesh of the impeller cover was then extracted using the Meshroom open-source implementation
[82] of the approach, described in Sec. 2.2. The results of the process are shown in Fig. 5b).
Some postprocessing was needed to crop the object mesh from the reconstructed background and
down-sample the density of the mesh. Additionally, the openings of the impeller cover had to be
manually cropped. The result of the postprocessing steps is shown in Fig. 5¢), while the wire-frame
representation of the final mesh is given in Fig. 5d).

In the 3" step, vibration measurements were performed on the impeller cover. An electrody-
namic shaker was placed on the turntable and attached to the test object via a thin stinger and
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Figure 5: 3D surface-mesh identification process: a) One of the 144 images of the test object, b) the result of
photogrammetric geometry reconstruction, ¢) Cropped surface mesh, d) Wire-frame representation of the experi-
mentally obtained final 3D surface mesh.

a piezoelectric force transducer (Fig. 3). It should be noted that the shaker was attached to the
object already during the previous step, before the acquisition of the 3D geometry reconstruction
image-set; in this way, the position of the impeller cover on the turntable remained constant for
the whole experiment. A pseudo-random signal in the frequency band between 100 and 3000 Hz
was used to excite the test object (as implemented in the SDyPy open-source package!, coauthored
by the authors of this manuscript). As the displacement amplitudes of higher-frequency oscilla-
tions are typically smaller, the power spectral density (PSD) of the excitation signal was defined
as a linear function that increased with the frequency with an amplitude ratio of 1:11 across the
frequency band from 100 to 3000 Hz. Consequently, more energy was input into the system at
higher frequencies, leading to a more uniform distribution of displacement amplitudes across the
observed frequency range.

The camera frame rate was set to 10000 frames per second (FPS) with a 10 us exposure time.
The frame size was set to 896 x 896 pixels and the bit-depth to 12 bit. A reference accelerometer was
attached to the inside of the impeller cover. The sampling frequency of the accelerometer and force
transducer measurements was set to 12800 Hz. As the duration of all the measurements was set
to 1 s, the frequency resolution in the frequency domain was 1 Hz for the accelerometer, force and
high-speed camera measurements. A step trigger signal was used to roughly align the beginning
of the camera, force and accelerometer measurements. As the excitation signal was stationary
and the system considered was linear and temporally invariant, the slight temporal misalignments
were resolved by the transformation of the signals into the frequency domain. There, the detailed
phase alignment was performed based on the reference accelerometer measurements, made for each
viewpoint (see Sec. 2.4).

To obtain the high-speed recordings, the p angle of the turntable (Fig. 3a)) was changed
from 15° to -7.5° in steps of 7.5°, while the step of the ¢ angle was increased by 60°. To achieve
a more homogeneous distribution of viewpoints, measurements at p = 0° and p = 7.5° were
offset by 30° along . In total, 24 videos of the vibrating structure were recorded (presented

Thttps://github.com/sdypy/sdypy
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by red arrows in Fig. 4a)), resulting in 180 GB of video data. The measured force-transducer
signal was used to monitor the excitation and ensure that the signal was stationary throughout
all 24 measurements. Displacement identification was performed for each view separately. The
displacement measurement points were defined by projecting the nodes of the 3D surface mesh onto
the high-speed recordings, as described in Sec. 3. Here, the occluded measurement locations had
to be filtered out. Given the convex and axisymmetric geometry of the impeller cover, a relatively
simple approach was used to filter the occluded points: measurement points were retained only if
they fell within a circular sector of the surface mesh, centered around the camera axis. The sector
angle was limited to 150° based on a visual inspection of the images of the reprojected points (see
Fig. 4c)). The displacement identification was performed using the pyIDI open-source python
package implementation of DIC? (co-authored by the authors of this manuscript).
Frequency-domain triangulation was then performed to obtain the full-field 3D ODS of the
impeller cover. Firstly, all 24 reference high-dynamic-range accelerometer measurements were
transformed into the frequency domain where integration into the displacements was performed.
An average amplitude spectrum (Fig. 6a)) was then calculated. The peaks in the spectrum were
identified to determine the frequencies, at which the spectral ODS were to be reconstructed.

a)

107(5 .

Displacement amplitude [m]
—
9
1

—
S
1

500 1000 1500
Frequency [Hz]

Figure 6: a) Displacement amplitude spectrum, identified based on the reference accelerometer measurements, b)
three 2D images of the ODS at 240 Hz.

Secondly, the image-based displacements were transformed into the frequency domain to form

Zhttps://github.com/ladisk/pyidi
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2D images of the test object’s ODS. Fig. 6b) depicts three such images for the first identified ODS
at 240 Hz. Displacements were identified from 6 or more viewpoints in 99% of all displacement
measurement locations, resulting in a high level of data over-determination. Consequently, the
dynamic range of the ODS measurement was increased and a higher quality of reconstruction was
achieved. All 2D ODS measurements in a given measurement point were used in the frequency-
domain-triangulation process and the full-field 3D ODS. Finally, in the 5" step, the visualization
of the results was performed and the 3D surface mesh of the geometry was deformed in accordance
with each of the ODS, magnified by an appropriate scaling factor.

The results of the described experiment are shown in Fig. 7. The ODS were identified in
1520 locations (nodes of the reconstructed surface mesh - Fig. 5d)). Seven modes were identified,
spread evenly over the entire observed frequency range. As expected, given the radial direction
of the excitation, the response of the cylindrical wall of the cover was most prominent. The ODS
at 800 and 920 Hz are very similar and were most likely caused by the non-symmetric boundary
condition imposed by the shaker stinger. Consequently, only the 800-Hz ODS is shown in Fig.
7¢). The maximum displacements at the first mode reached amplitudes of roughly 1 pm, while
the displacement amplitude at the sixth mode was two orders of magnitude smaller, despite the
ramped excitation signal. The magnification factors used to produce the results, shown in Fig. 7,
were calculated so that the displayed maximum deflections have roughly the same amplitude over
all six identified modes. While the magnification factors can be chosen arbitrarily, the displayed
results show that using the proposed method, displacements with very small amplitudes can be
extracted and visualized. The amplitudes of the displacements are given both in metric units
and in pixels. The conversion factor of 4.3 pixels/mm was determined as the ratio of the known
dimensions of the chessboard calibration pattern in pixels and mm.

Finally, a comment regarding the execution time and computational burden of the described
approach is provided. The process of geometry reconstruction varies greatly from case to case.
Firstly, the complexity of the geometry dictates, how many views need to be included in the
reconstruction. Secondly, smaller details, such as openings in the impeller cover need considerable
user interaction in the post-processing stage. For the present test case, roughly 30 minutes was
required from the start of the camera calibration process to the generation of the finished surface
mesh.

During the displacement identification process, 596 measurement locations were considered on
average for each viewpoint and a subset size of 31 x 31 px was used. The displacement identification
was performed on an 6-core AMD Ryzen 5 7600X processor, 32 GiB of DDR6 RAM and an M.2
SSD. On average, each video took 8 minutes to process resulting in a total computation time of
192 minutes for all 24 videos.

The script to perform the post-processing of the displacement data and the FDT required 12.5 s
to run and created a memory footprint of 4800 MiB. The DIC results took up most of the memory
at 2400 MiB (24 videos at 100 MiB), while the majority of the computation time was required for
the transformation of the data into the frequency domain. The FDT itself required less than 1
second to produce all 6 presented ODS and used 1.4 MiB of memory.

The proposed methodology is computationally efficient as displacement identification is per-
formed in the first step of processing the high-speed recordings. Consequently, the amount of
data for the subsequent steps is greatly reduced. Similarly, only vibration data at the natural
frequencies of the structure is considered, further reducing the computational time of the final
triangulation.
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Figure 7: ODS of the impeller cover: a) 240 Hz at 5503 times magnification, b) 495 Hz @ 8547x, ¢) 800 Hz @
12528x, d) 1330 Hz @ 14757x, e) 1870 Hz @ 165940x and f) 2370 Hz @ 86632x.

4.2. Airplane model

An additional experiment was performed on a metal airplane model to demonstrate the per-
formance of the proposed method on a more complex geometry and highlight the methods ability
to provide an omnidirectional study of an object’s dynamic response.

The primary focus of this experiment was the identification and visualization of the flexural de-
flection shapes of the model’s wings. The electrodynamic shaker was repositioned on the turntable
to provide excitation in the vertical direction accordingly. The airplane model was attached to the
end of the shaker’s stinger, lifting it of the turntable and providing clear visibility of its underside.

For image-data acquisition, the camera was positioned to be horizontally aligned with the
airplane model to ensure maximum sensitivity for the expected vertical displacements of the wings.
During the data acquisition, the p angle was set to 15°, 7.5°, 0° and -7.5°, dictated mostly by
the limitations of the turntable’s movement. The described setup was optimal for displacement
identification and additionally enabled the recording of the airplanes underside, resulting in a more
complete final result. The experimental setup is show in Fig. 8a).

Again, a speckle pattern was applied to the surface of the test object (Fig. 8b)). The core
image-set for 3D geometry reconstruction was obtained using the process, described in Sec. 4.1.
To enhance the completeness and detail of the 3D model, an additional set of images was captured
using an uncalibrated smartphone camera. These supplementary images improved the coverage of
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Figure 8: a) Experimental setup for the airplane model test case, b) Airplane model test object.

the areas that were poorly documented using the stationary high-speed camera. The final surface
mesh was comprised of 959 nodes.

As in the impeller cover case, a pseudo-random excitation signal was used to excite the object
and the data-acquisition parameters remained unchanged. As the airplane’s geometry is more
complex than the impeller cover in the first case an alternative method was used to determine which
displacement measurement locations are visible in a given high-speed recording. An occlusion-
culling step was therefore implemented using the OpenCV implementation of ray-tracing [76]. All
the mesh nodes were ray-traced to the known camera position of the recording. If a ray intersected
with the surface mesh, the corresponding node was considered occluded. The remaining nodes
were reprojected onto the recording and resulted in valid displacement measurement points.

The results are depicted in Fig. 9. The first two bending modes of the wings were identified
in the observed frequency range. Additionally, a mode of the tail wings was identified (Fig. 9c)).
For reference, the undeformed shape of the airplane is also shown faintly on Fig. 9.

Displacements [px -1073] Displacements [px -1073] Displacements [px -1073]
286 -14.3 0.00 14.3 28.6 -5.25 -2.63 0.00 2.63 5.25 -4.45 -2.23 0.00 2.23 4.45
[ . — —_—  — [ = —
Displacements [pm] Displacements [pm] Displacements [um]

924 462 0.00 4.62 9.24 -1.69 -0.847 0.00 0.847 1.69 -144  -0.718 0.00 0.718 1.44

Figure 9: ODS of the airplane model: a) 412 Hz at 2165 times magnification, b) 1393 Hz @ 11805x, c) 1581 Hz @
13925x

The second flexural mode of the airplanes wings at 1393 Hz (Fig. 9b)) is displayed from three
views in Fig. 10 to showcase the completeness of the full-field results, achievable with the proposed
methodology.

The distribution of the number of viewpoints from which each ODS measurement location was
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Figure 10: The second flexural mode of the airplane model’s wing at 1393 Hz, displayed from three different views.
observed is shown in Fig. 11. In nearly 95% of the 959 locations, the displacements were identified

from six or more views. Consequently, a high level of measurement redundancy was achieved,
resulting in a very robust and accurate ODS identification.

Frequency

601 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of viewpoints

Figure 11: Distribution of measurement locations by number of viewpoints from which they are visible.

The full-field ODS results, presented in Sec. 4.1 and 4.2, are more intuitively visualized in the
supplementary video material.

5. Conclusions

The omnidirectional, multi-view, high-speed-camera-based full-field 3D modal magnification
method was introduced. The method results in a non-contact extraction and visualization of full-
field 3D operating deflection shapes of a structure without any required prior knowledge regarding
its geometric or dynamic properties. Following an initial calibration of the imaging system, a set
of static images of the test object is obtained and used to produce a 3D surface mesh using a pho-
togrammetric approach. High-speed recordings of the test object’s stationary vibrations are then
obtained from a large number of viewpoints. 2D image-based displacement identification is then
performed for each view using digital image correlation. In the following step, frequency-domain
triangulation is performed on the identified 2D displacements to obtain full-field 3D operating de-
flection shapes of the test object. Finally, the 3D surface mesh is deformed in accordance with the
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reconstructed deflection shapes to produce a full-field visualization of the test object’s vibrational
behavior.

The performance of the proposed methodology was demonstrated on two experimental test
cases: a sheet-metal impeller cover of a vacuum-cleaner motor and a metal airplane model. The
unknown geometry of the test objects was reconstructed based on a large number of static images,
captured with a calibrated camera (e.g., 144 in the case of the impeller cover). In the case of
the airplane model, this image-set was extended by additional uncalibrated images to aid with
the reconstruction of smaller details. A total of 24 high-speed recordings of the vibrating object
were captured for each test case. Most displacement measurement locations were observed from
6 or more view-points (99% in the impeller cover case and 95% in the airplane model case).
This resulted in a large over-determination of data for the frequency-domain-triangulation step.
Consequently, multiple full-field operating deflection shapes with displacement amplitudes as low
as 0.5 of a thousandth of a pixel were extracted and clearly visualized for each test case.
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Appendix A: The effect of the camera calibration uncertainty on the quality of the
3D operating deflection shapes

The effect of the camera calibration uncertainty on the quality of the 3D operating deflection
shapes is quantified in this section. A synthetic Monte Carlo simulation based on a vibrating thin
square plate was performed for this purpose.

A flat square plate (100 x 100 mm) was discretized using a regular grid of 20 x 20 nodes. The
out-of-plane vibrational response of the plate was simulated as a superposition of its first three
bending modes (Fig. 12b). The corresponding natural frequencies of the plate were defined at 10,
25 and 60 Hz. There was no phase shift between the modes. The maximum displacement of the
plate was scaled to 0.01 mm while the contributions of the three modes were weighted by factors
of 1, 0.5 and 0.35 respectively. The synthetic displacement field was generated for all 400 nodes
over a 1 second time window at a sampling frequency of 1000 Hz.

A 3 x 3 array of virtual cameras was then simulated in front of the plate. The cameras were
positioned on a sphere with the radius of 0.5 m that was centered at the center of the plate. The
spacing of the cameras was 40° both along the azimuth and elevation angles (Fig. 12a)). The
cameras were modeled using the pinhole camera mode. The focal length of all cameras was set
to 2150 px while the image-size was set to 800 x 800 px. These parameters were selected to be
similar to the setup used in the impeller cover experiment. Once the virtual cameras were defined,
the generated displacement field was projected to each of them producing a simulation of DIC
displacement extraction. Frequency domain triangulation was performed on this information to
produce the ground truth results (Fig. 12b)).
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Figure 12: a) Camera setup for the synthetic experiment, b) The ground truth reconstructed mode shapes.

In the next step, the Monte Carlo sensitivity analysis could be performed. The uncertainty
of the camera calibration was modeled by introducing Gaussian noise to the intrinsic and ex-
trinsic camera parameters. The standard deviations used to generate the perturbations were as
follows: 2px for the focal length, 1px for the principal point coordinates, 0.1 for the quaternion
representation of the cameras rotation matrix and 10 mm for the camera position. The perturbed
camera parameters were then used to perform the frequency domain triangulation and reconstruct
the plates 3D ODS at natural frequencies. 1000 iterations of the Monte Carlo simulation were
performed.

The results of the Monte Carlo analysis are shown in Fig. 13. For each of the three ODS, the
absolute displacements in the z direction are shown on the top graph. The point indices begin in
the bottom left corner of the plate (see Fig. 12b)) and increase along the = axis. For all three
modes, the 95% confidence interval is widest at the locations of largest deflections. The histograms
of error magnitudes at these locations are displayed on the bottom graphs.
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Figure 13: Results of the Monte Carlo analysis: a) First ODS, b) Second ODS, ¢) Third ODS.



Appendix B: The effect of displacement data over-determination

As cited in the introduction of the present work, Del Sal et al. showed that performing displace-
ment triangulation based on an increasing number of cameras leads to an increase in measurement
accuracy [63]. Here, a synthetic experiment was performed to demonstrate the effect of data over-
determination on the quality of the final results of the proposed methodology. The same core
setup was used, as described in Appendix A (Fig. 12). The azimuth and elevation angle steps
were decreased to 20° to generate a denser array of virtual cameras. Four iterations of the syn-
thetic experiment were performed, based on 2, 4, 8 and 24 considered viewpoints respectively. The
camera array for each of the iterations is shown on Fig. 14.

2-camera array
4-camera array

8-camera array

EEOMN

24-camera array

(| IE' HE B

Figure 14: Camera array setup for the synthetic noise study.

A Gaussian noise with the standard deviation of 0.01 px was added to the synthetic image-
based displacement measurements of all cameras. Consequently the displacement magnitudes and
the noise floor of the measurements were similar to the real-world experiments presented in Sec.
4 of the manuscript.

The Modal Assurance Criterion (MAC) matrices between the ground truth and noise-polluted
reconstructed ODS were calculated to visualize the effect of data over-determination on the quality
of the final result (Fig. 15).
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24-camera array.
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