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Abstract

In experimental dynamic substructuring, coupling of substructures sharing a line- or surface-like interface
proves to be a challenge due to the di�culties in interface modelling. Modelling a high number of degrees
of freedom at the common interface can be too stringent when imposing compatibility and equilibrium con-
ditions, thereby causing redundancy and ill-conditioning. To mitigate the e�ects of overdetermination and
experimental errors, that can lead to a high error ampli�cation, several techniques have been developed,
proposing di�erent reduction spaces to weaken the interface conditions. This work investigates reduction
space de�nitions in dynamic substructuring for coupling continuous interfaces. In particular, a compara-
tive investigation of three established techniques, namely the frequency-based modal constraints for �xture
and subsystem, singular vector transformation, and virtual point transformation, is conducted within the
frequency domain. The feasibility of all approaches is supported by an experimental case study, which can
guide practitioners in selecting a suitable approach for their speci�c needs.

Keywords: Frequency based substructuring, Continuous interface, Modal constraints for �xture and
subsystem, Singular vector transformation, Virtual point transformation

1. Introduction

In the �eld of designing and developing assembled products, a modular approach in the form of substruc-
ture-coupling techniques has gained popularity in recent years. Structural dynamic analyses can be carried
out more e�ciently if the complex assemblies are divided into smaller subsystems. These are then analysed,
studied, or optimized separately in the early stage of product design, and later coupled to predict the
response model of the �nal assembly using dynamic substructuring (DS) methods. In a variety of di�erent
substructure modelling approaches, numerical and experimental methods are combined and DS can be
applied within one of the representative domains [1, 2]. Experimentally obtained response models are
usually related to frequency based substructuring (FBS) due to its straightforward implementation with
estimated frequency response functions (FRFs).

In the context of experimental FBS, the main challenge for a successful substructure-coupling imple-
mentation remains the modelling of the common interface between the substructures [3]. DS requires
compatibility of the displacements along the interface between two substructures and the equilibrium of in-
terconnecting forces to be satis�ed. Practical di�culties relate to the measurement of an appropriate number
of degrees of freedom (DoFs) at which interface conditions are imposed. Coupling too many DoFs can results
in redundancy and consequently bad conditioning of the interface coupling equations. Ill-conditioning com-
bined with inevitably present measurement errors (random or systematic in nature) can lead to a high error
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ampli�cation [4, 5, 6]. Limiting the number of interface measurements and imposing weak compatibility
avoids those problems, but can signi�cantly deteriorate the accuracy of the coupled dynamics.

A solution can be applied by projecting the measured dynamics into a representative subspace [1]. This
mitigates the e�ects of measurement errors since the interface conditions are now imposed in the reduced
space and are thus related to as weak. Redundant and insigni�cant dynamic information that is not included
in the reduced subspaces is left uncoupled. This is bene�cial since this part is commonly strongly a�ected
by measurement errors, is badly controlled or badly observed.

The original virtual point transformation (VPT) [7] uses rigid interface de�ection modes (IDMs) to
de�ne representative subspace. The method proved to be suitable for point-like interfaces where a relatively
small contact area ensures connectivity between the substructures [8]. An extension of the method to
include pre-de�ned �exible IDMs in the reduction bases followed in [9, 10]. The geometrical nature of the
transformation enables obtaining the required collocation of the reduced set of DoFs between substructures
across the interface although measurements are not performed on matching locations. However, this means
the method is sensitive to location bias [11]1.

In the context of component-mode synthesis (CMS), modal constraints for �xture and subsystem (MCFS)
[13] is a commonly used approach [14] the use of which was also suggested for FBS in [15]. A �exible �xture
is introduced to the coupling work�ow and the reduction basis is de�ned as a truncated set of physical mode
shapes of the �xture. Singular vector constraints (SVCs) were introduced in [1] where a reduction basis is
de�ned by dominant singular vectors of the coupled substructure-�xture modal model, obtained by means
of singular value decomposition (SVD). In [16], the MCFS is extended by considering the modal bases of
both substructures to be coupled when imposing SVCs.

A method developed with the aim to handle �exible interface behaviour in the frequency domain is the
singular vector transformation (SVT) [17], where force and displacement reduction spaces are extracted
directly from the measured response models by the means of SVD. The method has been proposed in the
context of substructure decoupling in [17].

This paper investigates the feasibility of di�erent established approaches to de�ning a reduction bases
for coupling continuous interfaces that resemble line- or surface-like connectivity between the substructures
(such as coupling of a gearbox to the engine) and are commonly plagued by di�culties in interface mod-
elling. FBS is selected for comparison due to its versatility in coupling both lightly and/or highly damped
structures, establishing its particular advantage in the present context. Thus, an experimental case study is
carried out on an assembly of one highly and non-proportionally, and one lightly and proportionally damped
substructure. First, a frequency-based MCFS approach is presented that imposes weak interface conditions
by using a �exible �xture and its physical mode shapes as a reduction space. Next, the SVT method, which
also adopts a �xture in the coupling work�ow, is investigated. Lastly, VPT is applied to directly couple two
substructures. The bene�ts, limitations, �ltering e�ect, and conditioning of each approach are investigated
in order to provide useful guidelines to the reader for choosing a suitable reduction approach when coupling
continuous interfaces.

The paper is organized as follows. In Section 2, a theoretical background on experimental frequency
based substructuring is given. Section 3 introduces three strategies to couple continuous interfaces using
experimental response models. All presented strategies are then validated in Section 4 on an experimental
case study, followed by a short discussion and user-guidelines in Section 5. Finally, conclusions are given in
Section 6.

2. Background concepts and notations

This section brie�y presents the methodology to couple subsystem admittances when dealing with ex-
perimental models. The dual approach to the problem named Lagrange Multiplier - Frequency Based Sub-
structuring (LM-FBS) is presented in Section 2.1, followed by the introduction of weak interface conditions
in Section 2.2.

1Method's sensitivity to location bias can be signi�cantly reduced using directly measured rotations as shown in [12].
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2.1. LM-FBS

The LM-FBS builds the admittance of the assembled system from the admittances of individual subsys-
tems with a set of interface forces as an unknown variable. Consider two substructures A and B assembled
at the interface DoFs (⋆)A2 and (⋆)B2 , as depicted in Fig. 1.

A

B

g2 g2
A B

1
Au

2
Au

2
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3
Bu

Figure 1: Substructures A and B to be coupled at the common interface.

With admittances of the individual subsystems known (YA and YB) and partitioned in internal ((⋆)A1
and (⋆)B3 ) and interface DoFs, the governing equation of motion for the uncoupled system can be written
as2:

u = YA|B (f + g) ,

u =


uA
1

uA
2

uB
2

uB
3

 , YA|B =
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11 YA
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21 YA

22 0 0
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22 YB
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0 0 YB
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33

 , f =


fA1
fA2
fB2
fB3

 , g =


0
gA
2

gB
2

0

 .

(1)

The vector u represents the displacements to the external force vector f , and g is the vector of interface
forces between the substructures that exist only at the interface DoFs, keeping the substructures together.

All subsystems considered are assembled through the proper application of interface conditions. The
compatibility of the displacements at the common boundary is recast in the general formulation:

Bu = 0 where B = [0 − I I 0] . (2)

The equilibrium condition is imposed by replacing the interface forces using a set of unknown Lagrange
multiplier vectors λ as3:

g = −BTλ. (3)

By eliminating the Lagrange multiplier vector from the set of Eqs. (1 - 3) we obtain [1, 2]:

u =

[
I−YA|BBT

(
BYA|BBT

)−1

B

]
YA|B︸ ︷︷ ︸

YAB

f , (4)

where YAB is the admittance of the assembled system. Note that di�erent Boolean matrices can be used
to apply the compatibility Bu and equilibrium Bf conditions (see [8] for more details).

2.2. Interface conditions in the reduced space

The success of Eq. (4) depends strongly on any form of error present while experimentally acquiring
subsystems response models (e.g. sensor noise-�oor, bias in excitation or response-measurement locations).
Directly applying strong compatibility and equilibrium using Eqs. (2) and (3) may lead to unreliable results
over the frequency range, especially if the term BYA|BBT in Eq. (4) is poorly conditioned.

2An explicit dependency on the frequency is omitted for the sake of readability. This will be the case for the remainder of
the paper.

3By choosing interface forces in this form, they are equal in magnitude but act in di�erent directions for any pair of interface
DoFs according to Newton's action and reaction principle.
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A solution that mitigates the e�ect of measurement errors can be found by imposing compatibility and
equilibrium conditions in a reduced space. Let us apply a reduction matrix Ru to the displacement vector
u:

u ≈ Ru q =


I

RA
u

RB
u

I



uA
1

qA
2

qB
2

uB
3

 . (5)

This projection-based approach can extend the interface to include DoFs that are not strictly located at the
physical boundary between A and B (Fig. 2). This is only possible given the collocation of the generalized
displacements q representing the interface displacements in the reduced space is obtained from Eq. (5) (i.e.
when RA

u and RB
u are partitions from the same physical modes of the interface region). The approach also

increases the observability and controllability of the interface dynamics4. The generalized displacements are

+A

1
Au

2
Au

B
2
Bu 3

Bu

Figure 2: Concept of extended interface, presented as hatched.

computed by pseudo-inversion, denoted with superscript (⋆)+:

q = R+
u u = Tu u. (6)

The compatibility can now be enforced on collocated DoFs in the reduced space, hence the compatibility
condition is weakened:

qB
2 − qA

2 = 0 ⇒ Bq = BTuu = 0. (7)

Similarly, we apply reduction matrix Rf to reduce equilibrium conditions5:

m = RH
f g =


I (

RA
f

)H (
RB

f

)H
I

g, (8)

where superscript (⋆)H denotes a Hermitian (conjugate transpose) operator since, in all generality, the
projection space for the forces can be complex. Imposing equilibrium conditions in the reduced space leads
to:

m = −BTλ ⇒ g = −TH
f BT λ where Tf = R+

f . (9)

By applying weak interface conditions6 the LM-FBS can be rewritten as follows:

u =

[
I−YA|BTH

f BT
(
BTu Y

A|BTH
f BT

)−1

BTu

]
YA|B︸ ︷︷ ︸

YAB

f . (10)

4Having a large number of forces and displacements measured in the interface region increases the accuracy in observ-
ing and controlling the interface dynamics, thereby improving the accurate evaluation of the interface motion in the chosen
representation space Ru.

5The literature usually refers to a weakening of equilibrium when referring to CMS. In cases where incomplete representation
bases are used in the modal reduction, this represents dynamics of the substructure in the reduced domain only in the
approximate way, thus equilibrium is automatically weakened [1]. In FBS there is no such concept of weakened equilibrium,
only weakened compatibility. To ful�ll such a weak compatibility only an interface force m in a space of lower dimension is
needed.

6Although Ru and Rf do not need to stem from the same interface modes, we assume that force and displacement subspaces
have the same dimension (same number of columns in Ru and Rf).
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The success of the coupling using Eq. (10) relies on the selection of the reduced subspaces in Ru and Rf

that should include only the dominant dynamic behaviour that is relevant for the assembled con�guration.
To summarize, the approach reduces the e�ect of measurement errors by weakening the interface problem

in two manners: the overdetermined nature of Eq. (6) means that only a �ltered representation of the
interface DoFs is considered for the compatibility, and the underdetermination of Eq. (9) means that interface
force distribution is computed to have a minimum W-norm while still having resultant m.

3. Strategies to couple continuous interfaces

Section 2.2 presented general formulation for imposing weak interface conditions to couple the substruc-
tures. In the following, three di�erent approaches are applied to the construction of transformation matrices
Tu and Tf , namely MCFS, SVT and VPT. Besides the fact that the di�erent approaches rely on di�erent
subspaces, they also di�er in the coupling work�ow. Both MCFS and SVT exploit an additional substruc-
ture in the coupling work�ow to extend the interface, and measured displacements/forces (referred to as
outputs/inputs) must be collocated between substructures across the interface (as explained later). On the
other hand, the VPT approach allows the interface to be extended without an additional substructure and
also eliminates the requirement for collocation of measured outputs/inputs.

3.1. Modal constraints for �xture and subsystem

A �exible �xture (often named transmission simulator or TS) can be introduced to the coupling work�ow
and attached to substructure B (see Fig. 3). The combined (sub)structure is denoted as BTS in the following.
To enable geometrical collocation for outputs/inputs at the common interface for TS, A and BTS7, the TS
structure should closely resemble the geometry of A to which substructure B will ultimately be connected
to8. BTS is coupled to the substructure A from which the TS structure is then decoupled to obtain the
response model for AB. The procedure is schematically depicted in Fig. 3. Common interface between
the substructures is thus extended when compared to the direct coupling (Fig. 1) and includes the full TS
substructure where inputs and outputs can be measured at the accessible locations.

A

BB

A = + _
1
ABu 1

Au
3
ABu

3
BTSu 2

TSu2
Au 2

BTSu

Figure 3: Coupling application with a transmission simulator substructure. Common interface for all substructures is presented
as hatched. Note that the transmission simulator is represented only by its interface dynamics since none of its internal DoFs
are of interest.

The response of the coupled assembly (with weak interface conditions so that measurement errors do not
contaminate the results) now becomes:

u =

[
I−YA|BTS|TSTH

f BT
(
BTu Y

A|BTS|TSTH
f BT

)−1

BTu

]
YA|BTS|TS︸ ︷︷ ︸

YAB

f , (11)

7For the sake of convenience, strict geometrical collocation is assumed between the outputs of the substructures involved
and, analogously, between the inputs. However, outputs and inputs can be non-collocated between each other, as long as the
interface displacements observed from the outputs and the interface forces controlled by the inputs have similar distributions,
and all interface DoFs are (implicitly) accounted for.

8For further guidelines regarding the design of the TS structure, an interested reader is referred to [1, 13].
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where9:

u =


uA
1

uA
2

uBTS
2

uBTS
3

uTS
2

 , YA|BTS|TS =


YA

11 YA
12 0 0 0

YA
21 YA

22 0 0 0
0 0 YBTS

22 YBTS
23 0

0 0 YBTS
32 YBTS

33 0
0 0 0 0 −YTS

22

 , B =

[
0 −I I 0 0
0 0 −I 0 I

]
. (12)

Following the idea of the original MCFS method approach [13], the reduced subspace consists of a
truncated set of m TS physical mode shapes. Assume matrix YTS

22 ∈ CNo×Ni has at least one input and
one output collocated (also known as the driving point). Using multi-reference modal identi�cation, one is
able to obtain m mode shapes, each mode shape r = 1, . . . , m being identi�ed for all output (rϕ

TS
o ) and

all input (rϕ
TS
i ) DoFs from the identi�ed modal constant or residue matrix rA (Fig. 4). For the sake of

clarity, subscript (⋆)2 is dropped in the following as for the remainder of this section, only interface DoFs
are considered unless speci�ed otherwise. Identi�ed input and output modes are then stacked as columns in
corresponding mode shape matrices:

ΦTS
o,m =

[
1ϕ

TS
o 2ϕ

TS
o . . . mϕTS

o

]
∈ RNo×m, ΦTS

i,m =
[
1ϕ

TS
i 2ϕ

TS
i . . . mϕTS

i

]
∈ RNi×m. (13)

rA
TS =



rϕ
TS
o1 rϕ

TS
idp

rϕ
TS
o2 rϕ

TS
idp

...

rϕ
TS
odp rϕ

TS
i1 rϕ

TS
odp rϕ

TS
i2

. . . rϕ
TS
odp rϕ

TS
idp

. . . rϕ
TS
odp rϕ

TS
iNi

...

rϕ
TS
oNo

rϕ
TS
idp


Figure 4: Extracting r-th TS output (rϕTS

o - ) and input (rϕTS
i - ) modes from the modal constant matrix10.

The transformation matrices for the MCFS approach in the frequency domain11 are de�ned as:

Tu =


I (

ΦTS
o,m

)+ (
ΦTS

o,m

)+
I (

ΦTS
o,m

)+

 and Tf =


I (

ΦTS
i,m

)+ (
ΦTS

i,m

)+
I (

ΦTS
i,m

)+

 (14)

and the assembly is performed using Eq. (11). Using the same reduction basis for interface DoFs from all
substructures retains the collocation in the reduced domain given that the measurements on all substructures
are performed in a collocated manner. The interface between A and B can actually be continuous given
that properly controlled and observed �exible mode shapes are retained in the reduction step.

9A decoupling step is denoted with a negative admittance matrix for the subsystem to be disassembled.
10The abbreviation dp stands for the driving point where the input and output DoF are collocated.
11The interested reader is referred to Appendix A where this reduction is further elaborated.
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3.2. Singular vector transformation

Singular vector transformation shares similarities with the MCFS method presented above. Again, the
issues with the collocation of measured DoFs at both sides of the interface can be resolved by including the
TS substructure in the coupling process. Whereas the MCFS method uses a truncated set of physical TS
mode shapes for the weakening step, SVT uses a truncated set of TS singular modes as explained next.

Performing singular value decomposition [18] per frequency line on a TS admittance matrix YTS one
obtains:

YTS = UTSΣTS
(
VTS

)H
, (15)

where UTS and VTS are orthonormal matrices of the left- and right singular vectors of YTS. ΣTS is
a diagonal matrix of real, non-negative singular values of YTS, arranged in descending order. Column
vectors of UTS and VTS can be respectively seen as approximate mode shapes and approximate mode
participation factors at individual frequency line with associated singular values indicating the importance
of their contribution.

For the reduced subspace, only m most dominant singular modes at each frequency line are retained12.
The transformation matrices for the SVT approach can thus be expressed as:

Tu =


I (

UTS
m

)H (
UTS

m

)H
I (

UTS
m

)H

 and Tf =


I (

VTS
m

)H (
VTS

m

)H
I (

VTS
m

)H

 (16)

and the assembly is performed using Eq. (11). In this manner, �exible interface motion (if properly controlled
and observed) can be retained in the coupling process. Hence, SVT can be seen as a suitable tool to
couple continuous interfaces. Furthermore, frequency dependent bases adjusts for the dominant singular
modes based on their contribution (unlike the MCFS method). Using the same reduction bases for all
substructures ensures compatibility of interface DoFs in the reduced domain (hence the motivation to adopt
the TS substructure in the coupling work�ow).

3.3. Virtual point transformation

With virtual point transformation, columns in Ru and Rf are selected as interface de�ection modes
de�ned by relative measurement location and orientation with respect to the virtual point (VP) [7], chosen
near the physical interface (Fig. 5).

The use of geometry dependent reduction bases leads to collocated generalized coordinates (VPs) for
both substructures, for which interface conditions are then imposed. This in turn avoids the need for adding
an additional �exible �xture to the coupling process as discussed above, signi�cantly reducing measurement
e�ort. The coupled response is obtained using Eq. (4).

Commonly, a reduction using a geometrical basis is performed by means of rigid IDMs only. That means
the interface �exibility is left uncoupled, posing an issue for coupling continuous interfaces and thus limiting
the approach for interfaces that only behave rigidly. In order to overcome this issue, two methodologies may
be adopted:

� Use of additional non-collocated virtual points that can approximate �exible interface motion by piece-
wise rigid interface regions and hence implicitly account for �exible interface DoFs.

� Including �exible IDMs in the de�ned reduction bases Ru and Rf that are de�ned from the relative
location of the measurement position with respect to the virtual point [9, 10]. However, the manual
selection of �exible IDMs included in the reduction spaces is a case-speci�c cumbersome task that
often relies on user-judgment.

12The selection of m is left to the user and can be facilitated by a graphical presentation of singular values with respect to
the frequency, see for instance Complex Mode Indicator Function (CMIF) [19].
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Figure 5: Coupling application with a virtual point13. Note that measured outputs and inputs on individual substructures are
not required to be collocated, just the virtual points.

Note that all approaches require considerable measurement e�ort in order to ensure su�cient over/under-
determination of the output/input transformations. Furthermore, all approaches are sensitive to bias errors
in input/output position/direction, although this can be identi�ed to some extent by measurement quality
indicators [7].

4. Experimental case study

Experimental validation of all three presented approaches was performed within a coupling application
of two substructures sharing a common surface-like interface. The experimental setup used is presented in
Section 4.1. Considerations on obtaining the transformation matrices are presented in Section 4.2, followed
by the coupling results in Section 4.3.

4.1. Experimental setup

An assembly of two aluminium substructures, presented in Fig. 6, is the object of this study14. The
boundary conditions were applied by �xing the assembly AB (through substructure A) to a vibration-
free table using steel cylindrical supports. Contact areas between A and the cylindrical supports were
padded with rubber pads that introduced local high damping in the structure and thus motivated the use of
frequency based substructuring instead of modal-based coupling approaches for this case (see also discussion
in Appendix B). Connectivity with the vibration-free table was ensured by two M10 bolts, top washers and
tightening torque of approximately 10 Nm. The connectivity at the interface between A and B was ensured
by four M10 bolts with locking nuts, top/bottom washers and a tightening torque of approximately 20 Nm,
motivated to minimize the e�ect of contact �exibility or non-linearities.

13The position vector from the VP to the center of the triaxial accelerometer is denoted by rk. The unit vector for each
sensor axis is eki and the response in each axis is denoted by uk

i (i ∈ (x, y, z)). The position vector from VP to the force
impact is rh, the impact direction is eh and the impact magnitude is fh.

14CAD models for all substructures considered in this study are freely available at the pyFBS repository [20].
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Figure 6: Overview of the assembled system AB.

Eight Kistler 8688A triaxial modal accelerometers were glued to the surface using cyanoacrylate glue.
Six of them were homogeneously distributed at the points on A and on TS between which compatibility will
be (weakly) enforced, with the other two �xed to the internal DoFs of A away from the interface (Fig. 7a).
26 impacts were performed, with 18 of them homogeneously distributed over the common area of A and TS,
and 8 of them at the internal DoFs of B (Fig. 7a). The excitation source was a PCB 086C03 modal hammer
equipped with a vinyl tip. The H-1 estimator was chosen for assembling the admittance matrix with six
impact repetitions per individual excitation location for all measurement campaigns.

To obtain a response model for substructure A, substructure B was then removed from the assembly
(Fig. 8) without changing any boundary or mass loading conditions (coming from sensors �xed to substruc-
ture A). FRFs of A were measured for the same 18 impact locations at the A/TS intersection and 24 response
locations (18 at the interface and 6 away from the interface, Fig. 7b).

The next measurement campaign comprised the TS substructure. All impact and response locations at
the A/TS intersection were carefully moved to the TS, aiming to preserve collocation. The free boundary
conditions of TS were approximated by hanging the substructure on thin rubber cords. FRFs of TS were
measured for 18 impact and 18 response locations (Fig. 7c).

B

A

1
ABu

3
ABu

2
ABu

(a)

A

1
Au

2
Au

(b)

2
TSu

(c)

B
3
BTSu2

BTSu

(d)

B
2
Bu 3

Bu

(e)

Figure 7: Schematic depiction of all measurements campaign with DoFs to be measured for each system; a) �nal assembly AB,
b) substructure A, c) substructure TS, d) substructure BTS, e) substructure B.

Substructure B was then assembled with TS to form a BTS assembly, keeping the sensors on TS exactly
as in the previous step. The connectivity between B and TS was a replica of the one of AB (with four M10
bolts, nuts and washers, tightened together to reach the 20 Nm torque level). Hence the joint between B
and TS replicated the actual joint in the assembly AB as closely as possible15. The free boundary conditions
of BTS were again approximated using thin rubber cords (Fig. 9). In total, FRFs of BTS were measured
for all 26 impact and 18 response locations (Fig. 7d).

The �nal measurements campaign was performed on substructure B. For this, 18 impacts and 6 ac-
celerometers were homogeneously distributed in the vicinity of the common interface between A and B

15Because of this, the resulting experimental substructure inherently includes the linearized sti�ness and damping in the
joint, which coupling work�ow A+B usually neglects [1].

9



Figure 8: Overview of the substructure A.

Figure 9: Overview of the assembled system BTS.

(Fig. 7e). 8 impacts at B's internal DoFs were retained, thus FRFs were measured for 26 impact and 18
response locations (Fig. 7e).

4.2. Obtaining the transformation matrices

The coupling approach with the MCFS method adopted the work�ow presented in Fig. 10. First, multi-
reference modal identi�cation [21] implemented within the python package pyFBS [20] was used to obtain
the �rst three �exible output and input modes from YTS (see Eq. 13) that were adequately controlled and
observed in the TS measurement campaign. Modes were properly mass-normalized16 by using the driving
point information included in the measurements. The �exible modes were then added to the 6 rigid body
modes, obtained using a numerical model of TS and stacked into transformation matrices Tu and Tf as
described in Section 3.1. Finally, the response model for AB was obtained using Eq. (11).

The same work�ow in Fig. 10 was then adopted for the SVT approach. Ten dominant singular modes
(m = 10, based on CMIF plot17) of YTS at each frequency line were retained for the reduction bases.

16Mass-normalization of modes is not required but performed anyway as the TS substructure is lightly and proportionally
damped, thus its modes should be real. Di�erent normalization of modes would only change the projection space.

17For the sake of simplicity, a constant number of singular modes was retained for the reduction bases throughout entire
frequency range of interest.
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Figure 10: Coupling work�ow using �exible �xture; a) �nal assembly AB, b) substructure A, c) substructure BTS, d) substruc-
ture TS.

Transformation matrices Tu and Tf (see Eq. 16) were constructed using pyFBS and the assembly was
performed using Eq. (11).

(a)

=

(b)

+

(c)

Figure 11: Coupling work�ow using virtual point transformation; a) �nal assembly AB, b) substructure A, c) substructure B.

For the VPT approach, two VPs (12 DoFs in total) were de�ned at arbitrary locations in the proximity
of the interface, denoted as green spheres in Fig. 11c. As the interface in this study can be considered as
continuous, the use of multiple VPs for coupling was preferred to including �exible IDMs due to the di�culty
of selecting a representative extended basis for �exible DoFs. The work�ow presented in Fig. 11 consisted
of coupling A and B directly without the use of TS. Hence both VPs were collocated at both substructures.
For each substructure, 9 impacts and 9 responses in the proximity of the interface were attributed to each
individual VP18. Based on their relative positions with regards to the VPs, transformation matrices Tu

and Tf were constructed from rigid IDMs using pyFBS. Finally, the response model of the assembly was
obtained using Eq. (10).

4.3. Results

The �nal coupling results for all three proposed approaches are presented in Fig. 12 and compared to the
reference. Overall, 26 × 24 reference FRFs were available, yet only one input/output relation is presented
here as the �ndings are analogous for all examined FRFs.

To quantify the agreement between the coupled prediction for each approach and the reference, an
amplitude and phase-sensitive coherence criterion [7] is adopted. The criterion is bounded between 0 and
1, with values closer to 1 indicating a strong correlation between the compared responses. In Fig. 13, the
coherence for each approach is presented in relation to frequency.

The comparison of the MCFS and SVT approaches indicates that both methods yield similar results
across the majority of the examined frequency range. However, SVT slightly outperforms MCFS through-
out the entire frequency range of interest (as con�rmed by Fig. 13), suggesting that the SV-based selection
principle directly from the measurements allows for a properly controlled and observed space to be included
in the reduction bases. As MCFS uses a constant subspace for each frequency line, it yields a poor ap-
proximation especially at higher frequencies where the modal density becomes higher. Both approaches
signi�cantly reduce the e�ect of noise at higher frequencies. However, this is not that apparent at low

18Response channels and impacts attributed to each VP were equally distributed in all directions and did not point straight
to the VP in order to observe and control VP's rotational DoFs.
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Figure 12: Amplitude and phase of a FRF of YAB using proposed approaches.
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Figure 13: Coherence criterion for each approach and the reference in relation to frequency.

frequencies due to the relatively high number of DoFs retained in the interface modelling [17]. Similarly, for
both approaches, some spuriousities are observed, particularly at higher frequencies.

The VPT approach generally leads to a reduced response accuracy with less prominent �ltering e�ect.
High amount of noise at lower frequencies is attributed to the high number (12) of VP DoFs which leads to
bad conditioning of the interface �exibility matrix (discussed in the following). For this reason truncated
SVD (TSVD) [22] was applied to the VP interface �exibility matrix (term BTu Y

A|BBTf in Eq. (10))
by discarding the lowest 1 % of singular values at each frequency line in the inversion. The TSVD-based
prediction is presented in Fig. 14 where an improved agreement with the reference is observed. In some
frequency bands, TSVD appears to be too severe, leading to spurious dynamics being present in the response.

Some further considerations that can be taken into account when evaluating reduction approaches are
addressed next.

4.3.1. Filtering

A quick assessment indicating the adequate selection of the reduction bases can be performed by in-
specting �ltered FRFs Ỹ (projected into reduced space and then back-projected using the selected reduction
bases):

Ỹ = Ru Tu YTH
f RH

f . (17)
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Figure 14: Amplitude and phase of a FRF of YAB using VPT and VPT with singular value truncation.

By visualizing �ltered FRFs against the measured ones (Y) for substructure A (Fig. 15), one can determine
how selected reduced subspaces represent the dynamics of A. The �ltering e�ect for the MCFS and SVT
approach appears to be similar in the low frequency range. Especially for the MCFS approach, �ltering is
quite severe in the high frequency range (1000 - 2000 Hz), which indicates the need of additional modes in
the reduction to improve the coupling prediction as the �ltered response is left uncoupled. As expected, due
to the high number of DoFs used in the transformation for the VPT approach, the �ltering e�ect is light.
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Figure 15: Measured and �ltered FRF of YA; a) MCFS ( measured, �ltered), b) SVT ( measured, �ltered),
c) VPT ( measured, �ltered).

4.3.2. Conditioning

Finally, some remarks are given on the interface �exibility matrix conditioning (Fig. 16), as its high
condition number might cause error ampli�cation in the predicted response.

Both MCFS and SVT approaches exhibit similar and fairly low condition number throughout the entire
frequency range of interest, meaning the reduction bases are well chosen. This in turn causes e�cient error
minimization in the reduction step.

The high condition number of the VPT approach is attributed to the presence of redundant (linearly-
dependent) DoFs through the whole frequency range, hence the argument to use TSVD in the inversion.
Especially as the substructures are very sti� in the direction along the interface, lack of �exible motion
makes some DoFs redundant.
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Figure 16: Condition number of the interface �exibility matrix for all studied approaches.

4.3.3. TS as a numerical model

If the basic requirements when designing a TS substructure [13] are met, TS can be accurately modelled
numerically with ease. In the following, the use of numerical TS structure is investigated by fully replacing
experimental TS response model in the MCFS and SVT approaches.

This is particularly advantageous for the MCFS approach, as a larger number of �exible mode shapes,
that are otherwise experimentally unattainable due to the limitations of the measurement equipment, can be
used to enrich the reduction bases. Additionally, introduction of numerical TS avoids modal identi�cation
step, which might be problematic due to the manual pole selection by the user. With numerical models, each
mode will have some (albeit small) contribution at each frequency line which is not the case for experimental
models where this contribution cannot always be measured. Thus controllability- and observability-related
issues can be avoided, which bene�ts both MCFS and SVT. Another advantage of using a numerical model
for the TS is the reduced measurement e�ort in the MCFS and SVT coupling work�ow.

In Eq. (12), the experimental response model of TS (YTS
22 ) was replaced by a numerical one. Numerical

physical and singular modes were used in construction of transformation matrices for MCFS (Eq. (14))
and SVT (Eq. (16)) approach, respectively. The results where the number of mode shapes and singular
modes retained in the reduction bases varied from 6 to 12 (with a step of 2) are presented in Fig. 17. The
performance of both approaches is alike which is additionally con�rmed by the coherence criterion. It is
evident that the �ltering e�ect of the reduction decreases while enriching the reduction basis with additional
modes. Results indicate that both approaches would bene�t from frequency dependent reduction bases, as
a reasonably higher number of DoFs retained in the reduction improves prediction in a higher frequency
range and vice versa (although six physical/singular modes clearly do not form a representative reduction
subspace for this speci�c case study).

5. Discussion

An experimental study presented the feasibility of all three approaches for coupling continuous interfaces.
A highly damped assembly was selected to get out of the 'comfort zone' of CMS and demonstrate the
versatility and robustness of the FBS19. The following observations might help the reader choosing a suitable
reduction basis for his/her requirements.

A robust modal identi�cation process is required to obtain �exible modes for the MCFS approach.
This process is rarely automated, even for lightly damped systems with well-separated modes, and thus
requires a selection based on user judgment. The MCFS approach also requires rigid body modes of the TS
substructure if in free-�oating conditions. Computing rigid body modes from measurements is possible but
challenging, therefore a numerical or analytical model of the TS is often required. The modal identi�cation
step assures the MCFS reduction bases, although extracted from the measurements, to be relatively noise-
free. For the same reason, modal reduction bases may be useful in experimental decoupling applications.

19More information on CMS limitations for this speci�c study is provided in Appendix B.
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Figure 17: Amplitude and coherence of a FRF of YAB using MCFS and SVT approach with various number of mode
shapes/singular modes retained in the reduction bases; a) �rst 6 mode shapes, b) �rst 6 singular modes, c) �rst 8 mode
shapes, d) �rst 8 singular modes, e) �rst 10 mode shapes, f) �rst 10 singular modes, g) �rst 12 mode shapes, h) �rst 12
singular modes. ( reference, TS approach, SVT approach, coherence on TS approach, coherence on
SVT approach)

So far, no criteria are available to motivate the proper selection of interface DoFs for the MCFS approach.
The selection thus depends solely on the judgment of the experimentalist.

On the other hand, SVT requires no numerical or geometrical model of the structure as the reduction
bases are extracted directly from the measurements. The simplicity of the SVT is evident in this aspect.
Furthermore, the selection of DoFs retained in the reduction for SVT can be led by observing corresponding
frequency-dependent singular values of the TS admittance matrix. This might only be problematic in certain
frequency bands, where, for instance, noise and poorly controlled or observed dynamics is predominant.

Both MCFS and SVT approaches o�ers signi�cant �exibility when de�ning reduction bases (although this
has not been investigated in the scope of this paper, but has already been suggested in [17]). For instance,
physical/singular modes of BTS and A can be used to de�ne the reduction bases. Available datasets can
also be concatenated and then processed by the SVD, which may provide more relevant reduced subspaces
for assembled con�guration, as suggested in [16].
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Both MCFS and SVT can predict accurate assembly response, yet require additional measurement e�ort
due to the presence of the TS substructure. A study using an equivalent numerical model of the TS
substructure in the coupling work�ow instead of experimental one demonstrated this e�ort can be e�ectively
reduced and that the higher number of modes may improve response predictions in various frequency bands.
The use of a numerical TS also eliminates the need for a modal identi�cation step, which is particularly
advantageous since no user-selection is required to obtain the modes. However, the TS substructure still
needs to be manufactured to be incorporated into the coupling work�ow and its numerical counterpart
carefully modelled and preferably updated to correlate with the measured response model.

VPT as a geometric reduction also requires knowledge of the system geometry to de�ne reduction bases.
Furthermore, the VPT approach signi�cantly reduces measurement e�ort (no TS substructure required,
inputs and outputs on A and B do not need to be collocated). Although the measurement bene�ts of VPT
are clear, its prediction accuracy cannot match the MCFS and SVT approaches. The proper selection of
interface DoFs depends solely on the judgment of the experimentalist, which proved to be problematic for the
VPT approach in this study. Within this experimental study, a rigid connection between the substructures
was assumed for the VPT approach. Given that this assumption is not valid, joint e�ects can be treated as
described in [1].

If poor conditioning of the interface �exibility matrix is observed, regularization techniques are suggested
to prevent error ampli�cation in the predicted response.

6. Conclusions

In this work, the coupling of continuous interfaces within frequency based substructuring is investigated.
Three di�erent approaches are studied that di�er in the choice of the reduction bases to mitigate mea-
surement errors and redundant dynamic interface behaviour. The MCFS method exploits �exible �xture's
physical mode shapes for measured output and input DoFs, identi�ed in a single step using multi-reference
modal identi�cation, as a reduction bases. SVT builds reduction bases from dominant singular vectors
extracted directly from the available �xture's FRF dataset. VPT is presented in the form of multiple VPs
approximating �exible interface motion by piece-wise rigid interface regions.

The MCFS and SVT methods o�er similar and fairly consistent prediction of the coupled response
throughout the entire frequency range of interest. The drawback of the methods is the requirement to use
an additional �exible �xture (transmission simulator) in the coupling work�ow. This step is necessary to
get a common reduction bases, however it introduces additional measurement e�ort in the coupling process.
VPT with its geometrical reduction bases avoids the collocation requirement of the measured DoFs and thus
signi�cantly reduces the measurement e�ort. The di�culties of the VPT are attributed to the interface
DoFs selection which can quickly lead to poor conditioning of the interface �exibility matrix and inaccurate
response prediction of the assembly. The presented results further motivate the need to estimate frequency
dependent reduction bases for all three approaches.

The reviewed methods are implemented in the open-source python package pyFBS, thus the comparison
is fully reproducible using the package documentation.
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Appendix A. Weakening using output and input modes

Let us assume that Yoi can be exactly expressed by Φo and Φi using mode superposition. For the sake
of simplicity, damping is neglected. Then, the projection into the reduced subspace can be written as:

Yweak = Φ+
o,m Y

(
Φ+

i,m

)T ≡ Φ+
o,m

Φo Φ
T
i
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=
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Relation above shows that the admittance matrix in the reduced domain (Yweak) can be expressed using
mode superposition from output/input modes projected in the subspace composed by a truncated set of m
output/input modes (Φ+

o,m Φo and Φ+
i,m Φi, respectively).

Appendix B. Mode complexity and CMS

In cases where one or more substructures are highly or non-proportionally damped, using FBS to perform
the assembly is preferred. The use of CMS for such cases is hardly feasible, as elaborated for our case study
in the following.

Inspecting a stabilization plot as a result of a multi-reference modal identi�cation reveals high modal
density for substructure A in the frequency range of interest (Fig. B.18). Furthermore, poles are not
su�ciently stable and it is thus challenging to select physically meaningful poles. For the same reason, the
use of so-called 'modal �ltering' using the superposition of selected modes for FRF reconstruction is not
advisable for this case study.
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Figure B.18: Stabilization plot for modal parameter identi�cation of substructure A.

CMS assumes the mode shape matrix for each substructure to be mass-normalized, i.e. scaled in such
a way that the modal mass matrix is identity, thereby restricting it to be real-valued. In this study, Modal
Complexity Factor (MCF) [23] was used to assess if identi�ed modes can be treated as real. MCF can be seen
as an indicator, bonded between 0 and 1, where values closer to one indicate that the mode is real-valued.
MCF was applied to estimate the complexity of the �rst �exible A-normalized mode (i.e. scaled in such a
way matrix A in state-space analysis is identity [24]) identi�ed using multi-reference modal identi�cation
[21] for substructures BTS, TS and A. In Fig. B.19, MCF values are accompanied by a visual depiction of
complexity by plotting the corresponding A-normalized mode shapes into a complex plane. It is evident
that the modes for lightly damped BTS and TS are real as its components tend to form a straight line,
while mode of highly damped substructure A is clearly complex (shows signi�cant dispersion in the complex
plane) and cannot be mass-normalized.

On the other hand, the design and modelling of the TS structure is always left to the experimentalist.
Hence designing and manufacturing a lightly damped structure with well separated modes is always possible.
Modal identi�cation on such structures is straightforward and modes for input and output DoFs used in
transformation matrices Tu and Tf in Eq. (11) can be obtained with ease (or even from the numerical model
of the TS).
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Figure B.19: Complexity of the identi�ed mode shapes; a) substructure BTS, b) substructure TS, c) substructure A.
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