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This research introduces a new, numerical and experimental approach to the analysis of the vibration of laminated structures 

resulting from magnetostriction. The focus is on the in-plane magnetostriction of electrical steel and its transmission into the 
out-of-plane direction, in which laminated structures (e.g., transformer cores, stators, and rotors) exhibit the greatest vibration. A 
finite-element magnetostriction model is developed on an experimental basis and enables a general, in-plane and out-of-plane 
assessment of the magnetostrictive response. The magnetostriction model is compatible with various finite-element structural models 
and is incorporated into a structural model, updated based on experimental data, representing a clamped laminated structure. An 
experiment employing the operating-deflection-shapes method is used to assess the presented approach under various operating 
conditions. 
 

Index Terms—Experiment, Finite-element methods, Laminated structure, Magnetostriction, Structural vibrations. 
 

I. INTRODUCTION 
HE AC MAGNETOSTRICTION of electrical steel is a phenomenon accompanying the magnetisation process and often presents 
problems in terms of vibrations and the generation of noise. In the field of electrical machines, magnetostriction is 

recognized as one of the main causes of noise emissions [1], [2], [3], together with the Lorentz and reluctance magnetic forces. 
In the case of modern power transformers with multistep-lap cores, magnetostriction is reported to have the dominant effect [4]. 
This research introduces a new, numerical and experimental approach to the analysis of the vibration of electrical-steel structures 
resulting from magnetostriction. 

In the field of numerical analysis, the finite-element method has proven suitable for modelling coupled magneto-mechanical 
problems because of its robustness and general applicability. A common approach to incorporating the effect of magnetostriction 
on the material is through a set of magnetostrictive forces (i.e., mechanical forces, which produce the same deformation of the 
material as does the magnetostriction [3], [5]). According to the review by Belahcen [6], the magnetostriction models are either 
force- or elongation-based. 

Force-based models [3], [7] employ the principle of virtual work to determine the set of magnetostrictive forces from the 
magnetic field. This is similar to the way reluctance magnetic forces are calculated. However, as Belahcen pointed out [6] “the 
accuracy of this method relies on accurate measurements of the magnetization of iron sheets under an applied mechanical stress, 
not only unidirectional, but also multidirectional stress”. Due to the non-linear relations, this method has so far been limited to 
static [7] and transient dynamic analyses [3]. Harmonic analysis, which is important in the research on vibrations, has not yet 
been performed. 

On the other hand, elongation-based models [8], [9], [10], [11] employ experimental data from magnetostrictive elongation to 
calculate the corresponding set of magnetostrictive forces through the stress-strain constitutive relations. In contrast to the force-
based models, harmonic analyses are not uncommon in the case of the elongation-based models [8], [10], [11]. 

The relation between the ac magnetic flux density (sinusoidal waveform) and the ac magnetostriction is nonlinear, both in 
terms of amplitude and frequency [12]. In order to perform a harmonic mechanical analysis with magnetostriction as the 
excitation, this relation needs to be analytically approximated. In approaches to harmonic analysis, a quadratic approximation is 
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by far the most common [8], [10]. In this way the fundamental magnetostriction harmonic, featuring double the frequency of the 
magnetic field, is considered and other higher harmonics are not. To take the latter into account, Hilgert et al. [11] used two 
different models, i.e., a cubic-spline- and a neural-network-based approximation. The latter was found to be favourable since the 
neural network directly calculates the amplitudes and phases of the harmonics, thus taking account of the hysteresis effect as 
well. 

The magnetostriction-induced vibration of an electrical-steel component (e.g., a transformer core, a stator or a rotor of an 
electric motor) is distinct for the following reason: whereas the excitation occurs in the plane of the sheets, the laminated 
structure is most flexible in the sheet's normal direction and an out-of-plane vibration often dominates [13], [14]. Models 
addressing this cross-axis coupling are rare and not suitable for general application. Kubiak and Witczak [13] took the 
macroscopic asymmetry of the transformer core to produce the out-of-plane excitation. Li et al. [15] employed an energy-
conservation principle to determine the equivalent magnetostrictive force, generating the out-of-plane vibration of an electrical-
steel plate. However, the natural dynamics of the plate was not included, thus limiting the applicability of the approach. 

The generalized magnetostrictive-forces approach introduced in this paper provides a universal method for the in-plane and 
out-of-plane magnetostriction-induced vibration analysis. The approach is elongation-based, regarding the experimental relations 
between the magnetic flux density and the magnetostrictive strain, to calculate the mechanical excitation. Analytical 
approximations are made for the individual harmonics of magnetostriction, translating the problem into the framework of a linear 
harmonic analysis. On the basis of the in-plane magnetostriction, the out-of-plane excitation mechanism is derived, taking into 
account the heterogeneous grain structure of the material. The complex coupling between the in- and the out-of-plane directions 
is identified experimentally. The magnetostriction model is element-based and can be implemented on various structural finite-
element models of electrical-steel structures. In this research, analysing a clamped laminated structure, the method by Pirnat et 
al. [16] was adopted to create an updated structural model. An experiment employing the operating-deflection-shapes method 
[17] is used to assess the numerical approach under a variable magnetic excitation, materials with various magnetostrictive 
characteristics and the structures of different natural dynamics. 

This manuscript is organized as follows. The theoretical background to the method of analysis is given in Section II. Section 
III presents the application of the method on a purpose-built experimental set-up. The conclusions are drawn in the final section. 

II. METHOD OF ANALYSIS 
The numerical analysis of the magnetostriction-induced vibration is based on the finite-element method. This section presents 

the structural and magnetostriction models employed in this study. 

A. Structural Model 
The mechanical properties of structures made of electrical steel are greatly influenced by the material itself and the technique 

used to assemble them. Since power-transformer cores and electric-motor stators and rotors are manufactured as stacks of 
electrical steel laminations, the interlaminar contact, in particular, has a significant effect. This research deals with the case of 
laminated stacks that are clamped together to provide dry friction between the laminations. 

The method presented by Pirnat et al. [16] was adopted to provide an updated structural model of the laminated structure. The 
laminations are modelled individually using shell elements and the orthotropic behaviour of the material is taken into account. 
As described in [16], the contact problem is solved using a two-stage formulation. In stage I the nodes of the adjacent 
laminations are connected using nonlinear link elements, representing the nonlinear stiffness of the stack in the normal direction. 
On the basis of the clamping forces, the distribution of the interlaminar pressure p  is computed. In stage II, the link elements are 
replaced with linear beam elements, modelling the linearized stiffness in the normal direction Nk  as well as the contact stiffness 
k  and the damping d  in the in-plane direction (Fig. 1). A linear friction contact law is implemented, assuming k  and d  are 
proportional to the surface pressure p . The ratios k p/  and d p/  are determined on the basis of the experimental data for the 
structure’s natural dynamics. 

 

 
Fig. 1.  Model of the interlaminar contact. 
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B. Magnetostriction Model 
The generalized magnetostrictive-forces approach operates at the level of a single finite element. The mechanical excitation 

for the element in question is determined on the basis of the magnetic field and the experimentally identified magnetostrictive 
characteristics. 
1) In-plane Vibration 

The in-plane magnetostrictive forces are used to represent the effect of the magnetostriction on the in-plane vibration of the 
selected finite element. The forces are calculated in the following way. Firstly, the deformation of a free (no boundary 
conditions) finite element is established, based on the magnetic flux density and the experimental magnetostriction data. 
Secondly, the mechanical forces needed to deform the element back into its original shape are calculated. Finally, the 
magnetostrictive forces are found as the reactions to these mechanical forces. This principle is analogous to the way that thermal 
strains are modelled. It should be pointed out that whereas the magnetostrictive forces produce the correct in-plane strain field, 
this is not true for the stress field and an erroneous result is possible in specific cases (e.g., in buckling under in-plane 
compression). 

For a mechanically orthotropic material, like electrical steel, the in-plane, stress-strain constitutive relations may be written in 
matrix form [18]: 

 

( )

0
1 0

1
,0 0 1

x x xy y x

y yx x y y
xy yx

xy xyxy yx xy

E E
E E

G

σ ν ε
σ ν ε

ν ν
τ γν ν

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (1) 

 
where σ  is the normal stress, τ  is the shear stress, ν  is the Poisson's ratio, E  is the elastic modulus, G  is the shear 

modulus, ε  is the normal strain and γ  is the shear strain. x  denotes the in-plane rolling direction of the steel sheet and y  the 
in-plane transverse direction. This research focuses on the case of the magnetic flux density vector occurring parallel to the 
rolling direction. Therefore, the magnetostriction can be assumed to produce no shear strain 0xy xyγ τ= =  [19]. The 
magnetostrictive strain in the direction that is normal to the steel plane (out-of-plane direction z ) is not considered in this 
research. 

The magnetostriction model takes account of each harmonic of the magnetostriction separately. Based on the experimental 
data of single-axis measurements (experimental method presented by Javorski et al. [20]), the following power approximation 
was found to accurately characterize the amplitudes of the harmonics: 

 
, 2 ,x

x

n
x x xk B n iεε = =  (2) 

 
where xB  is the amplitude of the magnetic flux density, 

x
kε  is the magnetostriction coefficient and xn  is the power of the 

approximation for the rolling direction. i  is a natural number. Whereas the power xn  defines the particular function type, used 
for the approximation (e.g., quadratic, quartic...), the coefficient  

x
kε  specifies the proportionality between the function type and 

the experimental data. The values of 
x

kε  and xn  are selected for the approximation that best fits the experimental data. 

If we assume that magnetostriction is an isochoric process [21], the ratio between the strain in the direction perpendicular to 
the magnetisation and the strain in the magnetisation direction is known: 

 
1 2.MSν = /  (3) 

 
This allows the amplitude of the magnetostrictive strain in the in-plane transverse direction to be written: 
 

, 2 .x

x

n
y MS x MS x xk B n iεν νε ε− −= = =  (4) 

 
At the level of a single finite element the magnetic solution of xB  is used together with the experimentally identified 

parameters 
x

kε  and xn  to calculate the components of strain xε  and yε - (2) and (4). The latter are used in (1) to derive the 

corresponding mechanical stresses xσ  and yσ . Finally, these stresses are transformed into nodal forces ( xF  and yF ) according 
to the principles of the finite-element method. The magnetostrictive in-plane nodal forces on a single finite element are presented 
in Fig. 2. 
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Fig. 2.  Magnetostrictive in-plane nodal forces on a single finite element. 

 
2) Out-of-plane Vibration 

As was pointed out in the Introduction, in-plane magnetostriction often results in a pronounced out-of-plane vibration [13], 
[14]. The research by Weiser et al. [4] focused on the mechanisms of noise generation in transformer cores, and showed 
dominant out-of-plane vibration in the case of a tightly compressed, multistep-lap core. According to the authors, 
magnetostriction is the single most important excitation mechanism of such a structure. Dynamical coupling between the in-
plane and the out-of-plane directions was also demonstrated in the research by Javorski et al. [20], which focused on the dynamic 
suitability of magnetostriction-measurement set-ups. It is clear that out-of-plane vibration is intrinsic to in-plane 
magnetostriction. 

The heterogeneous grain structure of an electrical steel is assumed to be the source of the coupling between the in-plane and 
out-of-plane directions. Namely, under magnetization the individual grains exhibit different magnetostrictive deformations; this 
being predominantly due to the different crystal orientations [22]. As a result of the incompatibilities between the grains, 
magnetostrictive strain is always accompanied by an additional elastic strain. In this research we assumed that this elastic strain 
manifests itself not only in the in-plane direction, but also in the out-of-plane direction. In short, along with the in-plane grain 
magnetostriction of lΔ , an additional out-of-plane deformation of wΔ  occurs. This out-of-plane deformation is assumed 
proportional to the magnetostriction lΔ . The deformation of a single grain of electrical steel is presented in Fig. 3, where B  is 
the magnetic flux density and l  is the length of the grain. 

 

 
Fig. 3.  Magnetostrictive deformation of a single grain of electrical steel. 

 
Whereas the in-plane model considers the macroscopic characteristics of magnetostriction (averaged over the grain structure), 

the out-of-plane model is founded on the presented local effect. For this reason, the finite-element mesh is set to correspond to 
the grain structure of the material with the element dimensions being of the same order as the average grain dimensions. Finite 
elements representing individual grains are not uncommon in magnetostriction models, although they are used for different 
purposes (e.g., averaging the magnetostrictive behaviour of the grains [22], [23]). In the approach introduced here, such an 
element mesh is subjected to out-of-plane nodal forces and in-plane nodal moments to generate the out-of-plane deformation - 
Fig. 4. Because the deformation is assumed to occur on the scale of the grains, the nodal forces and moments are set to alternate 
between the elements in a chess-pattern manner. In this way a static equilibrium is also maintained. The amplitude of the 
out-of-plane nodal forces is estimated with: 

 
2 2 ,z F x yF k F F= +  (5) 

 
where Fk  is the force-proportionality factor. 
The amplitude of the in-plane nodal moments is estimated with: 
 

2 2 ,x y M x yM M k F F= = +  (6) 
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where Mk  is the moment-proportionality factor. Using (5) and (6) a generalized linear relation is established between the 
in-plane and the out-of-plane deformations. Due to the complexity of the coupling between the two directions, the 
proportionality factors Fk  and Mk  are identified experimentally. 
 

 
Fig. 4.  Magnetostrictive out-of-plane nodal forces and in-plane nodal moments on a single finite element. 

 
It should be pointed out that the introduced concept of out-of-plane deformation does not originate from experimental 

identification of the magnetostriction of individual grains. It was assumed on the basis of global magnetostrictive response of 
electrical-steel structures to enable modelling the transmission of the in-plane magnetostriction into the out-of-plane direction. 

III. APPLICATION OF THE METHOD 
An experiment involving magnetostriction-induced vibration was conducted to provide reference data for the presented 

numerical method. A sinusoidal magnetic field with a frequency of 50 Hz and various flux densities was used to generate 
magnetostriction in the electrical steel. In accordance with the magnetostriction model, the magnetic field was oriented in the in-
plane rolling direction of the material ( x ). The research was focused on the magnetostriction harmonics of 100 and 200 Hz as 
their considerable amplitudes proved advantageous to the quality of the measurement. 

A. Test Object 
Two stacks of electrical steel sheets were used as the test objects. The stacks were made of 15 sheets of grain-oriented 

electrical steel, each sheet measuring 180 mm x 40 mm x 0.27 mm. Different grades of material were used for the stacks to 
provide dissimilar magnetostrictive behaviours. The sheets were compressed together using clamps with bolt fastenings. The 
clamping torque was controlled using a precision torque wrench. The relation between the torque and the corresponding 
clamping force was determined with a separate experiment. Different numbers of clamps and different clamping forces were 
used to create dissimilar natural dynamics for the two stacks. The used lamina surface pressure was in the range of typical values 
for the majority of electrical-steel components. Details of the stacks are presented in Table I. 
 

TABLE I 
THE ANALYSED STACKS 

 
Grade – 
standard 
EN 10107:2005 

Number of 
clamps 

Clamping 
torque 

Clamping 
force 

Stack A M 103-27 P 5 1.2 N·m 398 N 
Stack B M 90-27 P 3 0.4 N·m 236 N 

 

B. Experimental Analysis of the Magnetostriction-Induced Vibration 
An experimental set-up (Fig. 5) was used to provide controlled magnetostrictive excitation of the test stacks and to determine 

the stack’s response. In the set-up, the stack was suspended using a couple of strings, emulating free-free boundary conditions. 
To form a closed path for the magnetic flux, a ferromagnetic yoke was used, with ferrous powder sacks positioned at the 
interface between the test stack and the yoke. The sacks were used to bridge any air gaps that might otherwise arise as a result of 
the vibration of the stack. Also, the sacks have a minimal mechanical influence on the stack, as will be evident from the results.  

A PC running a custom-designed measurement application was used to perform the measurement. The magnetisation signal 
was generated with a 16-bit analogue signal generator, amplified with a 1-kW laboratory power amplifier and applied to the 
magnetising coil (550 turns), positioned on the yoke. The magnetic flux density in the stack was monitored with a search coil (1 
turn) that was tightly wound around the sample to minimize the influence of the air flux. A 16-bit analogue input module, 
running at a 5-kHz sampling frequency, was used to acquire the signal from the search coil. The reading was used in a feedback 
loop for the control of the magnetisation signal. 

The mechanical response of the stack was measured using the operating deflection-shapes method [17]. Effectively, this 
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method sorts the resulting movement of the structure into individual frequency components. A laser Doppler velocimeter 
(sensitivity 0.2 V/(mm/s)) was used to measure the out-of-plane response of the stack. The measurement was performed at 26 
measurement points, arranged in a grid of 2x13 points. The velocity signal was acquired using a 24-bit analogue input module, 
running at a 5-kHz sampling frequency. 

 

 
Fig. 5.  Set-up for the measurement of the operating deflection shapes. 

  

C. Numerical Analysis of the Magnetostriction-Induced Vibration 
The operation of the experimental set-up was analysed numerically using the two-stage approach to structural modelling 

(Section II.A) and the introduced, generalized magnetostrictive-forces approach (Section II.B). Steps of the procedure for the 
numerical analysis are schematically presented in Fig. 6. 

 

 
Fig. 6.  Steps of the procedure for the numerical analysis. 

 
1) Structural Model 

The structural model is required to reflect the essential modal characteristics of the analysed structure (the test stack), i.e., the 
eigenmodes with corresponding natural frequencies and damping ratios. Therefore, these characteristics were identified using an 
experimental modal analysis [24]. The same grid of 26 measurement points as in operating-deflection-shapes analysis was used. 
The system was excited with an electrodynamic shaker and the excitation force was monitored with a force transducer 
(sensitivity 1.2 mV/N). A roving piezoelectric accelerometer (sensitivity 10 mV/(m/s2)) was used to measure the response at the 
measurement points. The signals of the two sensors were acquired using a 24-bit analogue input module, running at a 25.6-kHz 
sampling frequency. A PC running a custom-designed measurement application was used to perform the measurement and to 
compute the required modal parameters. The set-up for the experimental modal analysis is presented in Fig. 7. 
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Fig. 7.  Set-up for the experimental modal analysis. 

 
The experimentally identified modal characteristics enabled an updated numerical model of the structure to be created. 

Modelling was performed using the ANSYS finite-element analysis package. The individual laminations were modelled using 
8-node structural SHELL281 elements since this element type is intended for mechanical analyses of thin to moderately thick 
shell structures. The element size was set to 5 mm x 5 mm x 0.27 mm, which corresponds to the mm-sized grains reported for the 
grain-oriented electrical steel [22]. Twenty-node structural SOLID95 elements were used for the clamps and nonlinear LINK8 
elements were used to represent the interlaminar contact in stage I of the numerical model. The stiffness of the links was 
determined on the basis of the experimentally assessed compression characteristic of the stack. Under known clamping forces, a 
nonlinear static analysis was performed to establish the interlaminar pressure distribution. This was followed by stage II of 
structural modelling, where BEAM4 elements were used instead of the links. Following the method from Section II.A, the in-
plane contact stiffness k  and the damping d  were set to be proportional to the contact pressure p  with the ratios k p/  and 
d p/  calibrated with respect to the experiment. Also, in the second stage, the nonlinear compression characteristic of the stack 
was linearized. This allowed a linear modal analysis of the structure to be made. The first two bending modes of the structure 
were considered when updating the numerical model. A comparison with the experiment is presented in Tables II and III. 
Relative error between experimental ( EXPf ) and numerical natural frequency ( NUMf ) is determined as: 

 

100%EXP NUM
f

EXP

ff
f

η
−

= ⋅  (7) 

 
and the relative error between experimental ( EXPξ ) and numerical damping ratio ( NUMξ ) is determined as: 
 

100%.EXP NUM

EXP
ξ

ξξ
η

ξ
−

= ⋅  (8) 

 
Relatively good agreement was achieved in terms of the natural frequencies, with the average relative error of 6%, while an 

acceptable agreement was achieved in terms of the damping ratios, with the average relative error of 34%. 
 
 
 
 
 
 
 
 
 



 8

TABLE II 
COMPARISON OF THE NATURAL FREQUENCIES  

 Bending 
mode 

HzEXPf [ ]  HzNUMf [ ]  fη [%]  

Stack A 1 112.2 110.3 1.7 
2 169.8 173.6 2.2 

Stack B 1 54.5 64.1 17.6 
2 213.5 204.7 4.1 

EXPf  - experimental natural frequency [Hz] 

NUMf  - numerical natural frequency [Hz] 

fη  - frequency relative error [%] 

 
TABLE III 

COMPARISON OF THE DAMPING RATIOS  
 Bending 

mode 
EXPξ [%]  NUMξ [%]  ξη [%]  

Stack A 1 5.1 5.1 0.2 
2 5.3 5.4 1.1 

Stack B 1 2.1 0.6 72.0 
2 4.6 7.5 62.1 

EXPξ  - experimental damping ratio [%] 

NUMξ  - numerical damping ratio [%] 

ξη  - damping-ratio relative error [%] 

 
2) Magnetostriction Model 

The input parameters for the magnetostriction model are the in-plane magnetostriction characteristics and the magnetic field 
solution. The in-plane magnetostriction was characterized using the single-axis measurement system presented in [20]. The 
relation between the amplitude of the magnetic flux density and the magnetostriction harmonics was approximated in accordance 
with (2). The method of least squares was used to select the best fitting approximation - Fig. 8. depicts the comparison of the 
experimental data and the approximation for stack B. The identified magnetostriction parameters are presented in Table IV. The 
proportionality factors Fk  and Mk  for the out-of-plane excitation were set with regards to the results of the operating-deflection-
shapes analysis. 

 

 
Fig. 8.  Approximation of the 100- and 200-Hz harmonics for stack B. 

 
TABLE IV 

MAGNETOSTRICTION APPROXIMATION PARAMETERS 
 Harmonic x

x

nkε
−[Τ ]  xn [/]   

Stack A 
100 Hz 4.96 × 10−7 2 
200 Hz 6.89 × 10−8 2 

Stack B 
100 Hz 2.35 × 10−7 2 
200 Hz 1.26 × 10−8 4 

x
kε  - magnetostriction coefficient xn−[Τ ]  

xn  - power of the approximation [/]  

 
The next step in the procedure was the assessment of the magnetic field. The experimental set-up was modelled in 3D using a 

twenty-node electromagnetic SOLID236 element with either a brick or tetrahedral shape. In accordance with the element-based 
approach, the same mesh of the stack as in the structural model was used for the magnetic analysis. The used element type 
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proved suited to modelling the laminations, taking into account the magnetisation curve as well as the magnetic orthotropy of the 
material. A time-stepping transient analysis was performed with the results for xB  acquired for each of the elements of the test 
stack. 

D. Assessment of the Numerical Method 
Joint use of the structural model and the magnetostriction model made it possible to perform numerical analyses of the 

magnetostriction-induced vibration of the two stacks. Firstly, to demonstrate the method accounts for variable magnetic 
excitation, stack A was analysed under three amplitudes of magnetic flux density, i.e., 1.0, 1.5 and 1.7 T. Secondly, to 
demonstrate the method also accounts for materials of various levels of magnetostriction performance and structures of different 
natural dynamics, stack B was analysed under 1.5 T. The harmonic excitations of 100 and 200 Hz were considered individually 
in a linear harmonic analysis. The mechanical response due to the reluctance magnetic forces was numerically estimated to be 
less than 1% of the total response, and on this basis it was neglected. The proportionality factors Fk  and Mk , characterizing the 
coupling between the in- and out-of-plane vibrations, were calibrated with respect to the experimentally identified response. The 
factors were determined for Fk  = 0.04 and Mk  = 0.002 m. 

The amplitude of the out-of-plane response was measured as the mean distance between the antinodes of opposite deflection. 
The results for the deformation amplitude are presented in Table V. Relative error between experimental ( EXPZ ) and numerical 
deformation amplitude ( NUMZ ) is determined as: 

 

100%.EXP NUM
Z

EXP

ZZ
Z

η
−

= ⋅  (9) 

 
The average relative error between experimental and numerical deformation amplitude is 30%. 
The vibration modes of the stacks are presented in Figs. 9-12. The shape of the modes is compared using the modal assurance 

criterion (MAC) [24]. 
 

TABLE V 
DEFORMATION AMPLITUDE 

 TxB [ ]  Hzf [ ] mEXPZ [ ]  mNUMZ [ ]  %Zη [ ]  

Stack A 
1.0 100 0.62 × 10−5 1.06 × 10−5 71.0 
1.0 200 3.11 × 10−7 3.43 × 10−7 10.3 

Stack A 
1.5 100 1.87 × 10−5 2.36 × 10−5 26.2 
1.5 200 11.0 × 10−7 7.38 × 10−7 32.9 

Stack A 
1.7 100 2.41 × 10−5 2.87 × 10−5 19.1 
1.7 200 7.54 × 10−7 9.62 × 10−7 27.6 

Stack B 
1.5 100 0.77 × 10−5 0.53 × 10−5 31.2 
1.5 200 6.42 × 10−7 5.23 × 10−7 18.5 

xB  - magnetic flux density amplitude [T]  

f  - frequency [Hz]  

EXPZ  - experimental deformation amplitude [m]  

NUMZ  - numerical deformation amplitude [m]  

Zη  - amplitude relative error [%]  
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Fig. 9.  Stack A: 100-Hz component of the out-of-plane response at 1.5 T. Experiment – left, numerical solution – right. MAC = 0.71. 

 

 
Fig. 10.  Stack A: 200-Hz component of the out-of-plane response at 1.5 T. Experiment – left, numerical solution – right. MAC = 0.55. 

 

 
Fig. 11.  Stack B: 100-Hz component of the out-of-plane response at 1.5 T. Experiment – left, numerical solution – right. MAC = 0.54. 
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Fig. 12.  Stack B: 200-Hz component of the out-of-plane response at 1.5 T. Experiment – left, numerical solution – right. MAC = 0.25. 

 

IV. CONCLUSIONS 
A new, generalized magnetostrictive-forces approach is introduced for a numerical analysis of the magnetostriction-induced 

vibration in electrical-steel structures. This approach takes into account the frequency composition of the magnetostriction by 
introducing generally applicable analytical approximations for the harmonics. 

The developed magnetostriction model is element-based and compatible with various structural models for a finite-element 
analysis. A structural model, accounting for the interlaminar contact and the mechanical orthotropy, was set up according to [16] 
and updated, based on experimental modal analysis. 

For the magnetostriction model, a mechanism of out-of-plane excitation was devised together with the in-plane excitation. 
Material heterogeneity was assumed to transmit some of the in-plane magnetostriction into the out-of-plane direction. Due to the 
complexity of the problem, an empirical approach was adopted, using the experimentally identified factors Fk  and Mk as 
measures of this cross-axis coupling. The values of 0.04 and 0.002 m seem reasonable, since in this way only a fraction of the in-
plane excitation is transmitted. However, due to the pronounced out-of-plane flexibility and the natural dynamics of the test 
structure, the out-of-plane response was up to two orders greater than the in-plane vibration. This additionally indicates the 
importance of research on the cross-axis transmission of vibrations. 

When comparing the experimental and the numerical response, relatively poor agreement can be attributed to the stack B at 
1.5 T and 200 Hz (Fig. 12). This is due to the presence of rigid body motion, presenting a disturbance to the experiment and 
particularly affecting the MAC criterion. 

Despite some discrepancies, a correlation in both the deformation amplitude and the shape is evident throughout the range of 
the disclosed results. In this way, the generalized magnetostrictive-forces approach presents a certain level of general 
applicability, since variable magnetic excitation as well as materials with various levels of magnetostriction performance and 
stacks of different natural dynamics were assessed. Presenting a limiting factor to the approach is the need for experimental 
identification of the proportionality factors Fk  and Mk , when analysing a new type of structure. 

Considering the development of the approach, further work is also required on the identification of the relations between the 
structure parameters (lamination thickness, stack dimensions, grain size) and the finite-element mesh characteristics (element 
shape and size). 
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