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Abstract

This research focuses on the time-domain identification of modal parameters using impact
response excitation from signals with a relatively small dynamic range and high noise con-
tamination (e.g., from high-speed cameras). The information required to identify the modal
parameters is limited and is contained mostly at the beginning of the signal. In order
to perform an identification from such a response, the following challenges have to be over-
come: a good frequency-domain separation (for close modes), a good localisation in the time
domain and an over-determination (to reduce uncertainty). To overcome these challenges
this research introduces the Morlet-wave modal identification method as an extension of the
Morlet-wave damping identification method, which has already proven capable of identifying
the damping of short signals. Here, the method is extended to the modal parameters and an
over-determination approach is proposed to reduce the uncertainty. The method identifies
each mode shape separately from 10 to a maximum of 400 oscillations and at damping levels
from 0.02% to 2% with a strong presence of noise in the signal. The method is tested on
an experimental example and the results are compared to the classical modal identification
methodology.

Keywords: Morlet-wave, modal identification, modal parameters, over-determination,
noise

1. Introduction

Modal analysis is a standard tool in structural engineering practice [1]. The identi-
fication of the modal parameters mainly depends on the quality of the signals that are
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acquired from the oscillating structure. Recently, new measurement techniques have been
researched, such as high-speed cameras [2] or 3D printed sensors [3–5], which provide a
relatively low dynamic range and are heavily contaminated with noise [6, 7]. Additionally,
a higher frequency content is especially problematic when using impact excitation, because
the measured displacement dies out quickly in the noise [8].

Recently, several authors have tackled the problem of modal identification using high-
speed cameras and developed methods that utilize the over determination provided by dense
spatial measurements [8–13]. Yang et al. [9] developed a technique based on blind source
separation to perform the mode separation and identification of mode shapes, and damp-
ing was identified using the logarithmic decrement method [14]. Huňady and Hagara [10]
introduced a method based on weighted frequency-response functions using the singular
value decomposition to identify the mode shapes. The Rational Fraction Polynomial [15]
and Frequency-Domain Polynomial [16] methods were used to identify the damping ratios
and natural frequencies. Javh et al. [8] introduced the hybrid concept for experimental
modal analysis by identifying system poles with a high dynamic-range sensor using the
Least-Squares Complex-Frequency method [17] and the mode-shapes were identified from
high-speed camera measurements using the Least-Squares Frequency-Domain method [18].
Li et al. [11] introduced the adaptive spatial filtering approach to extract and enhance the
modal displacements’ identification directly from pixels: mode-shapes were identified using
the optimization approach by fitting sinusoid-based piecewise functions; natural frequencies
and damping ratios were identified using the least-squares rational function method [19].
Wang et al. [12] presented the optimization approach of fitting the SDOF response on the
measured data to obtain all the modal parameters from the under sampled response data.
Willems et al. [13] presented the optimization procedure to match the mathematical model
of the know system onto the underlying dynamics of the observed system, which is obtained
from a dense measurement set by applying proper orthogonal mode decomposition.

The continuous wavelet transform [20] (CWT) can be used for analysing responses from
low-dynamic-range sources, because it has a good time-and frequency-localization capability
and it is resistant to noise [21]. With an application to real data, Staszewski [22] introduced
three techniques to identify the damping from a MDOF impulse response with close modes,
which were further researched by Slavič et al. [23] on the influence of edge-effect and fre-
quency bandwidth using the Gabor wavelet. Chen et al. [24] performed an analytical study
of the CWT based on the Morlet wavelet for the identification of damping and natural
frequencies to provide general guidance for choosing wavelet-function parameters. Modal
identification using the CWT was performed by several researchers: Le and Argoul [25]
introduced the Cauchy wavelet on a free response and later it was used on responses with
non-proportional damping by Erlicher and Argoul [26]. Modal identification was also per-
formed on ambient responses by Lardies and Gouttebroze [27] using the modified Morlet
wavelet. Le and Paultre [28] extended the CWT with singular value decomposition to de-
tect modes under the noisy ambient responses. Le [29] performed a direct identification of
the system poles from frequency-scale signal decomposition on ambient responses. Wang
et al. [30] proposed to express the CWT of the free response signal as a weighted sum of
the analytical signal components by relating the weight functions to the parameters of the
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Gabor wavelet function. In this way, they were able to develop four different approaches to
identify modal parameters, focusing on short signals and closely spaced modes. The CWT
is exposed to the edge effect [31] and is computationally demanding [32]. The Morlet-wave-
damping identification (MWDI) method was developed by Slavič and Boltežar [32] as an
alternative to the CWT, which contains all the benefits from CWT, but does not suffer from
the edge-effect and is computationally significantly less demanding. Theoretically, MWDI
should be even more resistant to noise then the CWT, but the identification of the damping
ratio is sensitive to the methods parameters [33] and the method does not identify the modal
amplitude and the phase angle.

This manuscript researches an extension of the MWDI method [32] for amplitude and
phase identification and proposes a least-squares approach to make the identification re-
sistant to parameter selection. With the introduced method the identification procedure is
simplified and the noisy measurements with the low dynamic can be evaluated for the modal
parameters on relatively short signals.

The manuscript is organised as follows. In Sec. 2 the theoretical background is provided
to support the development of the Morlet-wave modal method, which is presented in Sec. 3.
The modal identification is tested in Sec. 4 on the numerically synthesised test cases with
high levels of noise and the damping identification is compared to the eMWDI method. In
Sec. 5 the modal identification is performed on the laboratory test case and the results of
the identification were compared to the classical methods.

2. Theoretical background

2.1. Definition of mechanical systems

The development of a methodology for modal identification is based on the damped free
response of a single-degree-of-freedom (SDOF) mechanical system that is defined as:

fm(t) = Xe−δ ωn t cos (ωd t− ϕ) (1)

where X and ϕ are the amplitude and phase angle that depend on the initial conditions, δ
is damping ratio of the equivalent viscous damping, ωn is the undamped natural frequency
and ωd is the damped natural frequency (ωd = ωn

√
1 − δ2). The response from Eq. (1) can

be extended to multi-degree-of-freedom (MDOF) mechanical systems as a sum of multiple
SDOF responses if the proportional damping model [34] is assumed. Such a representation
is also applicable to continuous systems [1].

2.2. Morlet wave integral

The Morlet wave integral was first introduced in the Morlet-wave damping identifica-
tion method [32]. In this article the Morlet wave will be extended to the identification of
modal parameters. The Morlet wave integral is based on the continuous wavelet transform
(CWT) [20] with the application of the Morlet basic wavelet function [35]:

Ĩ =

∫ T

0

fm(t)ψ∗(t) dt (2)

3



where T is the length of the observed signal fm(t), ψ(t) is the basic wavelet function and ∗

is a complex conjugate. The time T is defined as:

T =
2π k

ω
(3)

where k is the number of oscillations at the selected frequency ω. To reduce leakage in the
frequency domain, k is limited to the positive integers. The Morlet wavelet function ψ(t) is
symmetrical around T/2 and it is defined as:

ψn, k, ω(t) = (2π)−
3
4

√
nω

k
e−

n2

16 k2 π2
(k π−ω t)2ei(k π−ω t) (4)

where the parameter n sets the width of the Gaussian window function and controls the
time/frequency spread. An important property of the continuous wavelet transform W {·}
(theoretical basic for the MWDI method) is the linearity, which makes it possible to sepa-
rately analyse signals with multiple harmonic components:

Wn, ki, ωi

{
N∑
i=1

ai fm,i

}
= ai

N∑
i=1

Wn, ki, ωi {fm,i} (5)

where a is a constant, the index i denotes the frequency component and ki = T ωi/(2π) .
As will be discussed later, care should be taken in the parameters’ selection for the wavelet
function to achieve the appropriate frequency separation [20, 32].

2.3. The Morlet-wave-damping-identification method

Damping identification with the Morlet-wave is based on deriving analytical equations
of the MW integral from the free response of the SDOF system (1). The base analytical
expression is derived by inserting Eq. (1) into Eq. (2) and by setting the frequency of the
Morlet wave (4) to the damped natural frequency of the system ω = ωd. The analytical
expression of the Morlet-wave integral is obtained as follows:

I (n, k, ωd) ≈ X
(π

2

) 3
4

√
k

nωd

e
4π2 k2 δ2

n2(1−δ2)
− π δ k√

1−δ2 ei(π k−ϕ) ε (n, k, δ) (6)

where ε (n, k, δ) is defined as:

ε (n, k, δ) = erf

(
n

4
− 2 k π δ

n
√

1 − δ2

)
+ erf

(
n

4
+

2 k π δ

n
√

1 − δ2

)
(7)

The approximation in Eq. (6) is valid if the following condition is satisfied (for details see
[32]):

k ≤ n2

8 π δ

√
1 − δ2︸ ︷︷ ︸

klim

(8)
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Based on Eq. (6) the information about damping is located in the absolute value of the
Morlet-wave integral, with the natural frequency ωd and the amplitude X, which are un-
known. While ωd can be identified relatively easy, the amplitude X can be cancelled out
by obtaining the ratio between two MW integrals with different time-spread parameters n1,
n2 [32]:

M(n1, n2, k, δ) =
|I(n1, k, ωd)|
|I(n2, k, ωd)| = e

4π2 k2 δ2

1−δ2
n22−n

2
1

n21 n
2
2

√
n2

n1

ε (n1, k, δ)

ε (n2, k, δ)
(9)

M is theoretically derived and depends on the unknown damping ratio δ and the selected
parameters of the Morlet-wave functions, where n1 > n2. The same ratio can be obtained
from the measured data fm(t) by numerically integrating Eq. (4), using the same selected
parameters:

M̃ (n1, n2, k, ωd) =

∣∣∣Ĩ(n1, k, ωd)
∣∣∣∣∣∣Ĩ(n2, k, ωd)
∣∣∣ (10)

Finally, the damping is identified by solving the equation:

M̃ (n1, n2, k, ωd) −M (n1, n2, k, δ) = 0 (11)

for the unknown δ [32, 36].

2.4. Closely spaced modes

When the response of the system has closely spaced modes it is important to take care
of the Morlet-wavelet function frequency spread defined as [32]:

σψ̂,i =
nωi
4π k

(12)

The ratio M̃ in Eq. (10) is calculated with different time-spread parameters of the wavelet
function n1, n2 and the parameter k, which regulate the frequency spread [20]. The frequency
spread for the Morlet-wave function is defined in Eq. (12) and since n1 < n2, closely spaced
frequencies ωi and ωi±1 need to comply with [32]:

max
{n2 ωi

4 π k
,
n2 ωi±1

4 π k

}
< |ωi − ωi±1| (13)

3. Modal identification

Here, the idea of how to perform the modal identification with the Morlet wave is intro-
duced. The Morlet wave was previously used to identify the damping [32] and the natural
frequencies [33, 36]. However, here the identification of the damping and the exact natural
frequency will be further enhanced and the identification of the amplitude and the phase
will be introduced.
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3.1. Exact natural frequency identification

The initial natural frequencies are estimated from the amplitude spectra of the response,
such as picking the peaks. In the CWT, as well as the Morlet-wave method, the selected
parameters n1, n2 and k can slightly shift the identified natural frequency [23]; therefore, for
the identification of the damping ratio and amplitude of the oscillation need to be identified
using the same selected parameters. The exact natural frequency is identified around the
initial natural frequency ω̃d,i, by finding the maximum of the absolute value of the Morlet-
wave integral (2):

∂
∣∣∣Ĩ (n, k, ω )

∣∣∣
∂ω

∣∣∣∣∣∣
ω̃d,i+σψ̂,i

ω̃d,i−σψ̂,i

= 0, (14)

where σψ̂,i is the frequency spread of the Morlet-wave function defined with Eq (12).

3.2. Damping identification

Tomac et al. [33] found that the damping identified using the Eq. (11) was sensitive
to the parameter k. The MWDI method tries to identify the damping on short signals,
using as small a k as possible; however, as the k value decreases, the uncertainty in the
identified result increases. Another problem when selecting k is related to the very small
damping (e.g., δ = 0.02 %), when a higher k is required to increase the sensitivity of the
identification [32].

The identification of damping is based on Eq. (9) M(n1, n2, k, δ), which is an exponential
function with k2. As an example, the numerically synthesised data with noise were used to
obtain a (numerical) experiment-based M̃ (10) (details in Sec. 4.1) and is shown for different
k values in Fig. 1. Using these data the damping ratio δ can be identified from the least
squares problem for multiple k values, where the cost function is:

Fcost(δ) = M(n1, n2, k, δ) − M̃(n1, n2, k, ωd) (15)

The result of the minimization can be seen in Fig. 1 where the theoretical M (9) is plotted
against the k values using the identified damping ratio.

An identification performed in this way decreased the uncertainty of the identified result
(details in Sec. 4). This is because the identification no longer depends on the selection of
a specific k value, instead it is performed using a range of k values.

3.3. Identification of amplitude and phase

After the identification of the natural frequency and the damping ratio, the amplitude
and the phase angle can be identified. The procedure for the identification of the amplitude
and the phase angle is similar to the identification of the damping ratio (15), only here it is
based on the Morlet-wave integral I (6). The result of the Morlet-wave integral is complex
valued and therefore the absolute value and the phase angle, which is derived from the
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10 14 18 23 27 31 36 40 44 49 k

1.35

1.40

1.45

1.50

iSNR = 20 dB

M̃(n1, n2, kj , ωd,j) − num. exper.

M(n1, n2, k, δident.) − analytical

Figure 1: Analytical ratio M based on identified damping ratio and the ratio M̃ based on noisy synthetic
signal versus k values (n1 = 5, n2 = 10).

argument, are minimised separately using the following cost functions:

Fcost(X) =
∣∣∣I(n1, k, ωd, δ, X)

∣∣∣− ∣∣∣Ĩ (n1, k, ωd)
∣∣∣ (16)

Fcost(ϕ) = ϕ− ϕ̃(k) = ϕ+ arctan

ℑ
[
(−1)k Ĩ (n1, k, ωd)

]
ℜ
[
(−1)k Ĩ (n1, k, ωd)

]
 (17)

3.4. Selection of default parameters

In this section the influence of the Morlet-wave parameters on the identification of the
modal parameters will be discussed. Modal identification using the Morlet wave requires
three parameters to be selected: n1, n2 and k. These parameters influence the sensitivity
of the method. The choice of n1,2 parameters has a twofold influence. One is on the
theoretical M in Eq. (9), which is related to the damping ratio. Another influence is on the
measurement-based M̃ in Eq. (10), which is related to the character of the signal in terms
of noise and frequency separation which is important in close modes (13). The parameter
n1 should be set as low as possible to achieve a high sensitivity, but n1 also influences the
klim (8). With regards to [32], n1 = 5 is a good balance between the sensitivity and the
number of oscillations included in the analysis. The parameter n2 should be at least double
that of n1 [32], and it is here set to n2 = 10. To increase the sensitivity higher values could
be used, but n2 also influences the identification for closely spaced modes (13) and therefore
high values should be avoided [32].

Parameter k defines the number of oscillations included in the analysis. In general we
are interested in the shortest possible length that results in a successful identification. For
a successful damping identification, it is reasonable that k is larger then 10 [32]; a higher k
results in more data being included in the analysis, but for a free response, the instantaneous
SnR [23] becomes low as the signal becomes smaller, while the noise is constant. Additionally,
a high k value is limited by the assumptions made for the Morlet-wave [32], which is especially
important at relatively high damping. This research will focus on a damping ratio below

7



2 %; using δ = 2 % and n1 = 5, Eq. (8) results in klim = 49. With smaller damping klim
increases as defined in Eq. (8) and at δ ≈ 0.25 % reaches 400, which will be the upper
limit used here. In this research k will be in the range 10 ≤ k ≤ klim, for example, for
klim = 400 theoretically 400 − 10 = 390 different values could be used; such a high over
determination is not required and here only Nk = 10 equally spaced integer values are used.
For klim = 400 this results in: kj =

[
10, 53, 96, 140, 183, 226, 270, 313, 356, 400

]
. Similarly,

if higher damping is estimated, klim would be smaller.
The parameters n1,2 used in this study are tuned for high sensitivity, which is achieved

at damping ratio of 0.25 % and klim = 400. If one increases the damping ratio up to 2 %,
klim decreases, allowing the method to work with high sensitivity, since M can always reach
the maximum values. However, when the damping ratio decreases to 0.02 %, the sensitivity
of the method decreases because k is fixed at 400 oscillations. For borderline cases, the
problem is similar due to the signal errors having a large influence on the damping ratio,
but the introduced overdetermination also reduces the influence of the signal errors on the
identified damping ratio without having to change the parameters n1,2. If the method is to
be used beyond the recommended damping range, for higher damping ratios it should be
necessary to reduce the sensitivity by increasing the n1 parameter; and for extremely low
damping ratios, the inclusion of more signal oscillations should be considered in addition
to increasing the n2 parameters. In the case of the closely spaced modes, the n2 parameter
can be reduced at the expense of sensitivity and/or by increasing the klo value according to
Eq. (13) [32].

3.5. Modal identification algorithm

The algorithm for the identification is based on the following parameters, which are set
as a default: klo = 10, khi = klim, Nk = 10, n1 = 5 and n2 = 10. For each mode at the initial
ω̃d, the modal parameters are identified in the following steps:

1) Select estimated damping ratio, obtain klim and kj.
2) Identify exact natural frequency ωd (Sec. 3.1).
3) Identify damping ratio δ (Sec. 3.2).
4) Identify amplitude X and phase angle ϕ (Sec. 3.3).

Step 1 starts with the estimated damping ratio that is used to define the initial klim value
from Eq. (8). Then, the Nk integer k values are equally distributed from klo to khi = klim.

In step 2 the natural frequencies are identified for each kj value in the range, by numer-
ically searching for the maximum of the MW integral (14) (using n = n1). A single natural
frequency value ωd is generated as a k-weighted average of the identified frequencies from
the range ωd,j:

ωd =
1∑Nk

j=1 kj

Nk∑
j=1

kj ωd,j (18)

In step 3 using ωd,j the damping ratio δ is identified using the least-squares minimization
of the cost function in Eq. (15). Here, the identified damping ratio needs to be checked
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against the estimated; the identified damping ratio needs to be smaller then the estimated,
otherwise the identification needs to restart at step 1 with a higher estimated damping ratio.

In step 4 using ωd,j and δ (from step 2) the least-squares minimization of the cost
functions in Eqs. (16) and (17) is performed to obtain the amplitude and the phase angle of
the selected mode.

During the initial identification phase, the estimated damping should be correlated to
the signal length, which will be used for the identification of the modal parameters. For
instance, if the highest damping ratio of 2 % is selected, that would result in klim = 49 (8),
which means that up to 49 oscillations at the selected mode would be required for the
identification. The algorithm for the method introduced in this research is implemented as
an open-source Python package Morlet-Wave Modal [37].

In this article the presentation of the method is focused into the SISO test. While
the extension to the SIMO test is straightforward, the extension to the MIMO tests would
require significant further theoretical, numerical and experimental research (e.g. on mode
participation factors and cross-coherence).

4. Numeric experiment

With synthetic experiments the identification of the modal parameters will be demon-
strated; additionally, damping identification will be compared against the extended Morlet-
wave damping-identification method (eMWDI) [33, 36], which is implemented as a Python
package extended-mwdi [38]. The eMWDI method was presented in 2017 by Tomac et al.
[33] and it is focused on damping identification, only. The introduced method identifies
all modal parameters. Additionally, the damping identification is performed by simplified
optimization approach, which resulted in damping identification from shorter signals.

4.1. Identification of modal parameters

The identification will be demonstrated on the free response of the SDOF system, gen-
erated with Eq. (1) by setting the parameters as follows: ωd = 100 · 2π s−1, δ = 1 %,
X = 1, ϕ = 0.7. The response is sampled with 5000 Hz, the length of the signal is set to
T = 1 s and it is contaminated using Gaussian noise with 0.1 variance, which resulted in
iSNR = 0 dB [23] for 12 oscillations, see Fig. 2.

Step 1 – Initialization. The estimated damping ratio of 2 % is selected, resulting in klim = 49
and kj values are equally distributed between 10 and 49 that are given in Tab. 1.

Step 2 – Identification of natural frequency. The estimated natural frequency was set to
ω̃d = 100.5 · 2π s−1. The results of identification per kj value are shown in Tab. 1. The

Table 1: Identification of natural frequencies performed with step 2 in distributed kj range.

kj: 10 14 18 23 27 31 36 40 44 49
fd,j (Hz): 99.6 99.8 100.0 100.1 100.1 100.1 100.1 100.0 100.0 100.0

k-weighted average (18) is: fd, identified = 100.0 Hz.
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Figure 2: Free response of SDOF system used to demonstrate the modal parameter identification.

Step 3 – Identification of damping ratio. Damping is identified with the LS minimization
of Eq. (15), using the exact natural frequencies ωd,j to obtain M̃(kj) (10). The result of
the minimization is δidentified = 0.9597 %, which represents the identified damping ratio. To
show how the theoretical M (9) fits M̃(kj), it is plotted against k, using the identified
damping ratio, and it is depicted in Fig. 3. If the estimated damping was set to 1 %, then

10 14 18 23 27 31 36 40 44 49 k

1.35

1.40

1.45

1.50

iSNR = 0 dB

M̃(n1, n2, kj , ωd,j)

M(n1, n2, k, δidentified)

Figure 3: Theoretical ratio M based on identified damping as result of least-squares minimization with
numerical experiment M̃(kj)

a higher klim = 99 would be available and the damping would be identified at 0.9712 %.
It is important to point out that 0 dB is a very noisy signal and if the noise level was
iSNR = 20 dB, damping would be identified at 1.00 % (for damping estimated at 2 %) as
can be seen in Fig 1.
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Step 4 – Identification of amplitude and phase angle. Using the identified damping, least-
squares minimization of Eqs. (16) and (17) is performed and the following results are ob-
tained: amplitude Xidentified = 0.98 and phase ϕidentified = 0.71. The theoretical absolute
value of the MW integral generated using the identified modal parameters |I| (6), against
k values is compared to the numerically synthesised |Ĩ(kj)| (2), which is shown in Fig. 4a.
Like for the amplitude it is shown in Fig. 4b for the phase angle. If the noise level was
reduced to iSNR = 20 dB then the identified amplitude would be 1.00 and the phase 0.71.
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Figure 4: Comparison between MW integral I generated using the identified modal parameters and MW
integral based on numerical experiment Ĩ(kj) for: (a) the absolute value and (b) the phase angle derived
from the argument of the MW integral.

4.2. Comparison to extended Morlet-wave damping identification method

The comparison is performed on the synthesized response of the SDOF mechanical system
contaminated with errors from the noise. The response is generated using the expression
defined with Eq. (1) using the parameters X = 1, ωd = 100 · 2π s−1 and the phase is
randomized for each run using a discrete uniform distribution [39] in the range: −180◦ ≤
ϕ ≤ 180◦. The methods are tested on three damping levels, which are given in Tab. 2. The
signals are sampled with 5000 Hz and the length is set to T = 4 s. Both methods are tested
on the default parameter set established in Sec. 3.5 and the klim is determined for each
estimated damping ratio (see Tab. 2). All the responses are contaminated using Gaussian
noise on two levels, defined with 0.001 and 0.01 variances. The noise level is expressed with
iSNR for the klim oscillations that correspond to 20 and 10 dB with respect to the noise
variances, for each damping ratio.

The comparative results of the damping identification are shown in Fig. 5, which are
expressed as a relative error from the theoretical values. The bars extend from the 0.25
quantile to the 0.75 quantile surrounding the median with lines that extend to span the full
dataset.

From the comparative results in Fig. 5 we can see that the damping was accurately
identified with both methods, having median values within ±1 % for the case shown in

11



Table 2: Parameters of the numerical experiment used in the comparison between the MWModal and
eMWDI methods.

δ (%): 0.25 0.1 0.05

δestimated (%): 2 0.8 0.4
klim: 49 124 248
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Figure 5: Comparative results of damping identification between two methods for different damping cases
on the numerical experiment (400 samples each).

Fig. 5a. In the second case (Fig. 5b) the median error was slightly increased up to 3 % for
eMWDI, while the MW modal remained below ±1 %. The improvement can be seen in a
reduction of the first and fourth quantiles. In the case with iSNR = 20 dB for eMWDI they
span from −90 to 50 % and in the case with iSNR = 10 dB, from −200 to 50 %. While for
the MW modal at the worst case spans from −35 to 50 %, which proves the reduction of the
uncertainty with the new method. The results could be improved if the lower damping ratios
were estimated, which would lead to higher klim values and consequently the longer signal
utilization. Additionally, the MW modal method performed the identification using just ten
k values, while the eMWDI used all the k values from the selected range. The identification
results for the natural frequencies using both methods span ±0.1 % and therefore the results
are omitted from the text.

4.3. Amplitude and phase identification

The amplitude and phase are identified using only using the MW modal method as a
continuation from Sec. 4.2. The amplitude results are shown in Fig. 6a, which are expressed
as the relative error between the identified and the theoretical. The phase-angle results are
shown in Fig. 6b, where they are expressed as the difference between the identified and the
theoretical angle: ∆ϕ = ϕidentified − ϕ.

The amplitude (Fig. 6a) was accurately identified in all cases, even though that higher
noise level increased the error span, but still all samples were identified within ±0.15 %. It is
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Figure 6: Identification results of numerical experiment using Morlet-wave modal method for (a) amplitude
and (b) phase angle for different damping cases (400 samples each).

similar for the phase angle (Fig. 6b) the where difference in the identified phase-angle span
was within ±2◦, although for cases at damping ratios 0.25 and 0.05 % the first quantile spans
from −360◦ and in the second case the fourth quantile spans to 360◦. It is because the one
sampled phase angle out of five that were near the boundary angles (178◦ ≤ |ϕ| ≤ 180◦) was
identified with a different sign for the case at δ = 0.25 % and two out of nine at δ = 0.05 %
case, for both noise levels equally. It can be observed that the identification of the amplitude
and the phase performs well at applied noise levels.

5. Experimental testing

Modal identification is performed on the experimental data obtained from the labora-
tory test model of the freely supported steel beam (w × h× d = 600 × 12 × 50 mm).
The identification is performed with the developed method using the Python package MW
Modal [37]. For verification, the results are compared with the classical modal identifica-
tion methods: Least-Squares Complex-Frequency method [17] for identification of natural
frequencies and damping ratios and Least-Squares Frequency-Domain method [18] for iden-
tification of amplitudes and phase angles. These methods are implemented in the python
package pyEMA [40] and work in the frequency domain with the frequency response func-
tions (FRFs). However, the MW modal method is developed for the identification of modal
parameters from the signals in the time domain. In order to adequately compare the iden-
tified amplitudes and phase angles, the MW modal method is exceptionally applied to the
impulse response function (IRF), a time domain representation of the FRF.

The beam was excited with a modal hammer (PCB 086C03) at the same spot where the
accelerometer (PCB T333B30) was placed, which is 420 mm from the left hand side of the
beam. The experimental setup is show in Fig. 7. The response and the stimulus signals
were sampled using the NI-9234 data-acquisition card with a sampling rate fS = 51200 Hz
for 2 s. The impulse response function was used for the identification on the first six natural
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frequencies f̃d,i, which were picked from the FRF magnitude plot, and the values are shown
in the second row of Tab. 3.

Figure 7: Experimental setup.

The identification is performed using the Morlet Wave Modal method on the IRF. The
estimated damping for a freely supported steel beam was 0.1 % for all modes (step 1).
Such a damping ratio resulted in a maximum klim value and because of relatively high
natural frequencies the low k value was increased by setting the klo = 20. The identification
performed with pyEMA was realized on the FRF in the range between 100 and 4000 Hz.
The results are shown in Tab. 3.

Table 3: Comparative results of modal parameter identification from experimental data.

Mode: 1st 2nd 3rd 4th 5th 6th

f̃d (Hz): 175 481 942 1551 2306 3201

M
W

M
o
d

al klim 348 400 400 400 400 400
fd (Hz): 175.1 481.1 941.8 1550.4 2306.0 3200.4
δ (%): 0.097 0.021 0.055 0.213 0.142 0.103

X (m s−2 N−1): 106 1717 1234 600 7576 8794
ϕ (◦): −93.7 −90.4 −90.7 −74.2 −85.7 −85.9

p
y
E

M
A

fd (Hz): 175.1 481.1 941.8 1550.8 2305.9 3201.3
δ (%): 0.095 0.022 0.054 0.222 0.143 0.109

X (m s−2 N−1): 110 1908 1216 614 7589 8979
ϕ (◦): −81.9 −76.5 −87.9 −72.0 −86.7 −78.1

From the ratio klim

/
f̃d (3) we can determine the signal length required to perform the

identification, which is only 125ms for the 6th mode. The pyEMA operated on the single
FRF and the damping was identified with the relative error between methods below 5 %,
except for the 6th mode, where the error was slightly higher, i.e., 6 %. The time required to
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perform modal identification using the introduced method (as implemented in MWModal
package) was 1.1 s, while for traditional methods (LSCE/LSFD methods, as implemented
in the pyEMA) required 2.3 s, on a laptop with the processor: 11th Gen Intel® Core™
i7-1185G7 @ 3.00GHz.

6. Conclusion

The Morlet-wave-based modal identification method is introduced. The theoretical back-
ground of which is described in detail, starting from previous research on the Morled-wave
and the continuous-wavelet-transform-based damping identification. The method is tested
numerically and experimentally. The numerical research of synthesized experimental data
that is heavily contaminated with noise showed better results than the Morlet-Wave damp-
ing identification method. e.g., a simulated impact response with instantaneous SNR = 0 dB
was, for a very short signal (12 oscillations), 4 % away from the true value. A paramet-
ric comparison against the extended Morlet-Wave damping-identification method showed
significantly lower uncertainty for the identified damping ratio.

An experimental validation was performed on the laboratory test case, as a steel beam
excited by a hammer and the response was measured with an accelerometer. The iden-
tification results were compared to the classical modal identification methodologies in the
frequency domain. The accuracy of all the modal parameters was comparable to the classi-
cal method, while the modal identification with the proposed method was performed for a
fraction of the time-domain data, only. The experimental research confirmed that the modal
parameters are successfully identified using impact excitation from relatively noisy data and
relatively short signals.

Based on the numerical and theoretical research, this manuscript confirms that the pro-
posed method is expected to be successful in the time-domain identification of modal pa-
rameters from relatively-short and low-dynamic range data, heavily contaminated with noise
(e.g., high-speed camera measurements, 3D-printed sensors).
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[38] I. Tomac, J. Slavič, itomac/extended morlet-wave: emwdi v0.3.1, 2022. URL: https://doi.org/10.
5281/zenodo.6979893. doi:10.5281/zenodo.6979893.

[39] D. Lemire, Fast random integer generation in an interval, ACM Trans. Model. Comput. Simul. 29
(2019). URL: https://doi.org/10.1145/3230636. doi:10.1145/3230636.
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